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Abstract

In this paper we consider stability of logistic networks. We give a
stability criterion for a general situation and show how it can be applied
in special cases. For this purpose two examples are considered.

1 Introduction

The control of one processing machine or a small plant of several machines
can be performed by one (central) control unite. A control can be designed in
such a way that a production process is stable in the sense that the number of
parts waiting in the buffer of the machine to be processed remains bounded.
In case of a plant we can speak of the number of orders to be complete. Such
number describes the state of a system. In case of large systems a centralized
control becomes unflexible and may be even impossible. One of the possible
solutions is the introduction of autonomous control [10], i.e., to allow single
parts or machines to make decisions. Modelling of some simple scenarios with
autonomous control by means of differential equations have been given in [2],
[11]. Due to globalization many enterprizes begin to influence each other, to
cooperate or merge together. Large logistic networks appear in this way. The
question arises, under which conditions such networks are stable. Since the
behavior of logistic processes is often nonlinear a suitable stability notion is the
input-to-state stability (ISS) defined below. In this paper we will give a stability
criterion for such logistic processes modelled by differential equations. Complex
logistic processes are often described and modelled with help of graphs. A nodes
of a graph may represent a processing machine or a plant in case of production
logistics as well as a traffic junctions or a warehouse in case of transport logistics.
The edges of the graph describe the connections or relations between the nodes.
The stability property is very important for the design of logistic networks.
This property ensures that the state of the whole system remains bounded for
bounded external inputs. There are several stability criteria of a small gain type
in the literature in the last decade [9], [8], [4]. Here we going to show how such
theorems can be applied for the investigation of stability properties of logistic
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Figure 1: Graph structure of the logistic network

networks with autonomous control. For this purpose we consider two examples
to show the essence and the method of usage of the small gain criteria. Some
simulation results will be also presented.

2 Motivating example

Let us consider a network of car production. The first node Σ1 receives the
orders of customers. Depending on the customer wishes the order is then for-
warded to a plant Σ4 where the car will be completed or the preparatory steps
in Σ2 and/or Σ3 are needed. The car is then supplied to one of the distribution
centers Σ5 or Σ6. The corresponding graph of the network is given in Figure 1.
The state of a plant is often model by differential equations [1], [7]. Let the
following system on describe the evolution of states of the nodes.

ẋ1 = u− ax1 + b
√
x1

1 + x2 + x3
(1)

ẋ2 =
1
3
ax1 + b

√
x1

1 + x2 + x3
+

1
2

min{b3, c3x3} − min{b2, c2x2} (2)

ẋ3 =
1
3
ax1 + b

√
x1

1 + x2 + x3
+

1
2

min{b2, c2x2} − min{b3, c3x3} (3)

ẋ4 =
1
3
ax1 + b

√
x1

1 + x2 + x3
+

1
2

min{b2, c2x2} + min{b3, c3x3} − min{b4, c4x4} (4)

ẋ5 =
1
2

min{b4, c4x4} − c5x5 (5)

ẋ6 =
1
2

min{b4, c4x4} − c6x6 (6)

One can check that each subsystem is ISS using ISS Lyapunov functions Vi(xi) =
xi, see [6] and [5], where the gains are also found. However the interconnection
of these systems is not always stable. The small gain condition can be applied
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for these systems. It imposes certain restrictions on the constants a, bi, ci in
the equations. See [5] for details. A numerical procedure was developed there
to check the small gain condition locally. The procedure was applied for the
stability investigation of the system (1-6). The motivation for influx and outflux
terms is similar as in the example with two nodes, which we consider in detail
in the next section.

3 Feedback loop as a two nodes network

We consider two stations processing parts coming from outside to the first sta-
tion and forwarded to the second one after being processed there. After the
processing on the second station the parts leave the network. The arrival pro-
cess of parts is described in terms of the time varying arrival rate function
u = u(t) which can be considered as a result of another autonomous process.
There are queues of length x1(t) and x2(t) in front of each station. The stations
are considered to be self-controlled, i.e., able to increase or decrease their pro-
cessing rates depending on certain circumstances, as for example current arrival
rate, own queue length or the queue length of the neighbor. Such a system can
be modelled with help of differential equations. Let be b1 = b1(t, u, x1, x2) and
b2 = b2(t, u, x1, x2) the processing rate of the corresponding station. Then the
current state of the system, i.e., the queue lengths, is then given as the solution
of the following differential equations

ẋ1 = u− b1, (7)

ẋ2 = b1 − b2. (8)

For our limited purpose it is enough to consider such a feedback loop. However
it can be considered as a part of a more complex network.

3.1 Interpretations

Here we give some possible interpretations of the scenario. Consider a container
ship being offloaded at a container terminal. The autonomous containers on
the ship arrive to the offloading facility (the first station) in a certain rate u
determined by their internal rules. The offloading facility consists of several
cranes, each of them has several operating regimes. For example if the queue
is short not all of them need to be active. If the queue becomes longer they
are able to switch themselves to a faster regime. A desired processing rate can
be achieved in this way. After offloading a container arrives to the customs
clearance (the second station) and waits there to be processed. Since the space
for this second queue is limited the offloading facility takes into account the
length of the second queue and its processing rate can be taken in the form

b1 =
ax1 + b

√
x1

1 + x2
, (9)
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where a and b are positive constants. For vanishing x2, i.e., for empty queue
at customs, the processing rate is essentially proportional to x1 if x1 >> 1 and
to

√
x1 if x1 << 1. With growth of the second queue x2 this processing rate

is reduced by the factor (1 + x2). The customs has several gates for container
clearance with varying number of service personal. It uses only one gate if its
queue is short and opens further gates when the queue grows. Let the processing
rate of customs be proportional to the length of its own queue, i.e.,

b2 = cx2, (10)

with a positive constant c. In this case the system (7-8) becomes

ẋ1 = u− ax1 + b
√
x1

1 + x2
(11)

ẋ2 =
ax1 + b

√
x1

1 + x2
− cx2 (12)

3.2 State equation and stability of the queues

The state equation (11-12) describes the evolution of the queues in dependence
of the inflow u and the initial conditions. We assume that each subsystem
is ISS. This means that there exists an ISS-Lyapunov function V1 for each of
them, i.e., for some ψ11, ψ12, ψ21, ψ22, γ of class K∞, χ1, χ2 of class K and α1, α2

positive-definite functions it holds

ψ1i(|x1|) ≤ Vi(x1) ≤ ψ2i(|x1|), ∀x1 ∈ R
n, i = 1, 2, (13)

|x1| ≥ max{χ1(|x2|), γ(u)} ⇒ dV1

dx1
(x1)

(
u− ax1 +

√
x1

1 + x2

)
≤ −α1(|x1|) (14)

|x2| ≥ χ2(|x1|) ⇒ dV2

dx2
(x2)

(ax1 +
√
x1

1 + x2
− cx2

)
≤ −α2(|x2|) (15)

Remark 1. Note than the solution of (11) is nonnegative for any initial con-
dition x1(0) = x0

1 ≥ 0. This follows from u ≥ 0 and any time when x1 reaches
zero ẋ1 = u ≥ 0 holds true. In the same way the solution of (12) is also non-
negative for any initial condition x2(0) = x0

2 ≥ 0. This is in agrement with the
notion of queue length, which cannot be negative. Hence in the following we will
write x1 and x2 instead of |x1| and |x2| respectively.

The small gain theorem in this case reads as follows

Theorem 2. Let V1 and V2 satisfy (13-15) and assume that

χ1 ◦ χ2(s) < s, (16)

then the interconnection (11-12) is ISS with an ISS-Lyapunov function given by

V (x1, x2) = max{σ(V1(x1)), V2(x2)}, (17)

where σ is a smooth class K∞ function with

χ2 < σ < χ−1
1 .

4



u

tt

x1

x2

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

10

11

Figure 2: Input u and the queues x1, x2

We consider V1(x1) = |x1| and V2(x2) = |x2|. These functions are not smooth
in zero, however one can change both in an arbitrary small neighborhood of
zero to be smooth. We will not go onto this technical details and will work with
them as with smooth functions. For nonnegative arguments we have then

dV1(x1)
dx1

=
dV2(x2)
dx2

= 1.

Let γ(u) := u2/c2u and χ1(x2) := x2
2/c

2
1, then from x1 > χ1(x2) and x1 > γ(u)

follows u < γ−1(x1) = cu
√
x1 and x2 < χ−1

1 (x1) = c1
√
x1, i.e.,

u− ax1 + b
√
x1

1 + x2
< γ−1(x1) − ax1 + b

√
x1

1 + χ−1
1 (x1)

=
cu
√
x1 + cu

√
x1c1

√
x1 − ax1 − b

√
x1

1 + c1
√
x1

= − (a− cuc1)x1 + (b− cu)
√
x1

1 + c1
√
x1

and (a−cuc1)x1+(b−cu)
√

x1

1+c1
√

x1
=: α1(x1) is a positive-definite function if a > cuc1

and b > cu. This shows that (13) and (14) holds true, i.e., V1 is an ISS-
Lyapunov function and the equation (11) is ISS. Now consider equation (12) and
let χ2(x2) :=

√
x2/

√
c2, then from x2 > χ2(x1) follows x1 < χ−1(x2) = c2x

2
2

and
ax1 + b

√
x1

1 + x2
−cx2 <

ac2x
2
2 + b

√
c2x2 − cx2 − cx2

2

1 + x2
= − (c− ac2)x2

2 + (c− b
√
c2)x2

1 + x2

where (c−ac2)x
2
2+(c−b

√
c2)x2

1+x2
=: α2(x2) is a positive-definite function if c > ac2

and c > b
√
c2. Now we see that the small gain condition reads as

χ1 ◦ χ2(s) < s ⇔ c2c
2
1 > 1

and the network is stable if for the given parameters a, b, c of the system there
exist positive cu, c1, c2 such that cu < b, c1 < a/cu, c2 < c/a,

√
c2 < c/b

and c2c
2
1 > 1. We can always take c2 < min{c/a, c2/a2}, c1 > 1/

√
c2 and

cu < min{b, a/c1}. Hence this network is input to state stable. The simulated
solution of (11-12) with the input u(t) = 1.5 + sin(t) + sin(5t)/2 and the initial
conditions x1(0) = 10, x2(0) = 10 is presented on the Figure 2 We see that
the solution remains bounded in this case.
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4 Conclusions

The most important for the logistics is the knowledge of the long term behavior
of the state of a system. Hence stability of a logistic networks is an important
property which guarantees that the state remains bounded. A general criterion
for the input-to-state stability was proposed. We have discussed how it can
be applied in some special cases. In general it yields some restriction on the
parameters of a system and can be checked numerically.
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6 Appendix: Definitions and known results

Let a logistic network be given. Consider equation describing dynamics of the
state xi ∈ R

Ni of the i-th node depending on the input ui ∈ R
Mi and states of

other nodes xj , j 	= i

ẋi = fi(x1, . . . , xn, ui), i = 1, . . . , n, (18)

fi : R

P
j Nj+Mi → R

Ni , i = 1, . . . , n. The system of these equations can be
written in the form

ẋ = f(x, u) (19)

with xT = (xT
1 , . . . , x

T
n ) ∈ R

N , N =
∑n

i=1Ni, uT = (uT
1 , . . . , u

T
n ), f(x, u)T =

(f1(x, u1)T , . . . , fn(x, un)T ). Let R+ denote the interval [0,∞) and R
n
+ be the

positive orthant in R
n. For any a, b ∈ R

n
+ let a < b and a ≤ b mean ai < bi

and ai ≤ bi for all i = 1, . . . , n respectively. Recall the definition of comparison
functions.

Definition 3. (i) A function γ : R+ → R+ is said to be of class K if it is
continuous, increasing and γ(0) = 0. It is of class K∞ if, in addition, it is
unbounded. (ii) A function β : R+ × R+ → R+ is said to be of class KL if, for
each fixed t, the function β(·, t) is of class K and, for each fixed s, the function
β(s, ·) is non-increasing and tends to zero at infinity.

The concept of input-to-state stability (ISS) has been first introduced in [12].

Definition 4. System (19) is input-to-state stable, if there exists a γ ∈ K∞,
and a β ∈ KL, such that for all ξ ∈ R

n
+, u ∈ L∞

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ(‖u‖∞) ∀ t ≤ 0, (20)
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in this case γ is called gain.

It is known that ISS defined in this way is equivalent to the existence of an
ISS-Lyapunov function.

Definition 5. A smooth function V : R
N → R+ is an ISS-Lyapunov function

of (19) if there exist ψ1, ψ2 ∈ K∞, χ ∈ K∞, and a positive definite function α
such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ R
N , (21)

V (x) ≥ χ(|u|) =⇒ ∇V (x) · f(x, u) ≤ −α(V (x)), (22)

for all ξ ∈ R
n
+, u ∈ L∞. Function χ in then called Lyapunov-gain.

Subsystem (18) is ISS, provided there exist γij , γi ∈ K∞, and a βi ∈ KL, such
that for all ξi ∈ R

n
+, ui ∈ L∞

‖xi(t, ξi, xj : j 	= i, ui)‖ ≤ max{βi(‖ξi‖, t),max
j �=i

γij(‖xj‖∞), γi(‖ui‖∞)} ∀ t ≥ 0,

(23)
If all n subsystems are ISS then these estimates give rise to a gain matrix

Γ = (γij)n
i,j=1, with γij ∈ K∞ or γij ≡ 0, (24)

where we use the convention γii ≡ 0 for i = 1, . . . , n. The gain matrix Γ defines
a monotone operator Γ : R

n
+ → R

n
+ by Γ(s)i := maxj γij(sj) for s ∈ R

n
+. The

global small gain condition assuring the ISS property for an interconnection of
ISS subsystems was derived in [3]. An alternative proof has been given in [4].
We quote the following result from these papers.

Theorem 6 (global small-gain theorem for networks). Consider system (19)
and suppose that each subsystem (18) is ISS, i.e., condition (23) holds for all
ξi ∈ R

n
+, ui ∈ L∞, i = 1, . . . , n. Let Γ be given by (24). If there exists an

α ∈ K∞, such that

(Γ ◦D)(s) 	≥ s, ∀s ∈ R
n
+ \ {0} , (25)

with D = diagn(id + α) then the system (19) is ISS from u to x.
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