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Abstract— This article is concerned with global asymp-
totic stability (GAS) of dynamical networks. The case when
subsystems are integral input-to-state stable (iISS) has been
recognized as notoriously difficult to deal with in the literature.
In fact, the lack of energy dissipation for large input denies
direct application of the small-gain argument for input-to-state
stable (ISS) subsystems. Here for networks consisting of iISS
subsystems it is demonstrated that a two-phase approach allows
us to make use of the ISS small-gain argument by separating a
trajectory into a transient and a subsequent ISS-like phase. In
contrast to the previous iISS results, the two-phase approach
immediately leads to a sufficiency criterion for GAS of general
nonlinear networks, which is given in a matrix-like form (order
condition).

I. INTRODUCTION

Stability of equilibrium points is one of fundamental issues

in analysis and design of complex dynamical systems. The

notion of input-to-state stability (ISS) [22] is often useful in

establishing global-type stability of nonlinear large-scale sys-

tems (networks) from their modules (subsystems). However,

in practice one is often faced with subsystems exhibiting

unbounded trajectories for inputs of finite magnitude even if

their autonomous dynamics is stable. While such subsystems

cannot be ISS, they may well be integral input-to-state

stable (iISS) [2]. The class of iISS systems is strictly wider

than that of ISS systems. Many practical examples suggest

that a network can be stable even if it contains some iISS

subsystems which are not ISS.

In recent years, small-gain type stability criteria have been

developed successfully for networks in the framework of ISS

[5], [6], [15], [14], [17]. However, the extension of these

results to networks of iISS systems has been defied by the

lack of instantaneous gain in the trajectory-based approach

and the insufficiency of a popular maximization technique

[12], [6], [17] for the construction of network Lyapunov

functions [8], [20]. Only very recently, a solution to the

network stability problem in the iISS framework has been

given based on another type of network Lyapunov function

in [11] without resorting to the maximization technique.

Nevertheless, the stability criterion given in [11] does not

reduce to the stability criterion given in a matrix-like form

(order condition) [5], [6], [15] even when all subsystems

are ISS. This discrepancy disappears when the number of

subsystems is two [10]. For general numbers, the discrepancy
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has been closed only when subsystems are formulated in a

particular way [11].

In this paper, without resorting to [11] and without con-

structing any network Lyapunov function, we aim at bridging

the gap between the previous ISS and iISS network results by

interpreting stability of networks composed of “iISS” subsys-

tems in light of the “ISS” methodology. The natural approach

taken in this paper separates the dynamics of the network into

two phases. The first one is the transient phase. The second

one is the subsequent ISS phase. The same approach has been

employed in [9] for interconnected systems composed of two

subsystems. A similar approach is also employed in [16] to

solve an input-to-output stability problem without demanding

ISS although the study does not formulate subsystems purely

in the iISS framework given in [2]. Compared with [16],

the method in [9] focuses on covering non-ISS subsystems

by preserving the dissipation formulation and the small-gain

type criterion developed previously for ISS subsystems. This

paper continues to pursue this approach for general networks.

The two phase methods have a drawback of being unable

to deal with external signals [1], unless the magnitude of

the external signals is sufficiently small [9], [16]. For the

purposes of this paper, external inputs will not be considered.

Due to space limitation, proofs are omitted1.

In Section II we will recall some prerequisites, before we

formally introduce the problem setup in Section III. The

two phases of our decomposition procedure are described

individually in Sections IV and V, and then combined in

Section VI. Some examples are given in Section VII to

illustrate the procedure, before we conclude in Section VIII.

II. PRELIMINARIES

Let R+ be the interval [0,∞) in the set of real numbers R.

A continuous function ω : R+ → R+ is said to be positive

definite and written as ω ∈ P if ω(0) = 0 and ω(s) > 0 for

all s ∈ (0,∞). A function ω ∈ P is said to be of class K and

written as ω ∈ K if it is strictly increasing. A function ω ∈ K
is of class K∞ if lims→∞ ω(s) = ∞. We write γ ∈ K∪{0}
to indicate that γ is either of class K or the zero function.

The symbol Id denotes the identity map. For ω ∈ P , we

write ω ∈ Q if Id + ω is strictly increasing. By definition,

we have P ⊃ Q ⊃ K. We have the following relationship:

Lemma 1: For any δ ∈ P , there exists δ̃ ∈ Q such that

s + δ̃(s) ≤ s + δ(s), ∀s ∈ R+.

Let R+ := [0,∞]. The inequalities < and ≤ on R+ are

extended to R+ with the convention ∞ ≤ ∞. If γ is a

1Proofs are available from the authors upon request.



class K∞ function, its inverse γ−1 is of class K∞. For γ ∈
K \ K∞, its inverse γ−1 is defined on the finite interval

[0, limτ→∞ γ(τ)). For γ ∈ K, an operator γ⊖: R+ → R+ is

defined as

γ⊖(s) = sup{v ∈ R+ : s ≥ γ(v)}.
We have γ⊖(s) = ∞ for s ≥ limτ→∞ γ(τ), and γ⊖(s) =
γ−1(s) elsewhere. For a non-decreasing ω ∈ P , its extension

ω: R+ → R+ is

ω(s) := sup
v≤s

ω(v).

Using these conventions for ω, γ ∈ K, we have ω ◦γ⊖(s) =
limτ→∞ ω(τ) for s ≥ limτ→∞ γ(τ). The identity γ⊖ =
γ−1 ∈ K holds if and only if γ ∈ K∞. It is important that,

in the case of γ ∈ K \K∞, we have only γ ◦ γ⊖(s) ≤ s for

s ∈ R+ although γ⊖ ◦ γ(s) = s for s ∈ R+. The symbols ∨
and ∧ denote logical sum and logical product, respectively.

For a, b ∈ R
n

the relation a ≥ b is defined by ai ≥ bi for

all i = 1, . . . , n. The negation of a ≥ b is denoted by a 6≥ b,

i.e., there exists an i ∈ {1, . . . , n} such that ai < bi. The

relation a ≫ b is defined by ai > bi for all i = 1, . . . , n.

For notational convenience, we write ∞ = [∞,∞, ...,∞]T ,

where the number of components is clear from the context.

III. NETWORK OF iISS SYSTEMS

In this paper, we consider the network described by

Σ : ẋ = f(x), (1)

where f = [fT
1 , . . . , fT

n ]T : R
N → R

N is locally Lipschitz

and f(0) = 0. The state vector of Σ is x = [xT
1 , . . . , xT

n ]T ∈
R

N , where N :=
∑n

i=1 Ni. This paper addresses global

asymptotic stability (GAS) of the equilibrium x = 0 of the

network Σ. For convenience, we say x = 0 is asymptotically

stable (AS) with respect to a set D if it is asymptotically

stable and its region of attraction contains D ⊂ R
N . We

suppose that there exist αi ∈ K and σij ∈ K ∪ {0}
and positive definite, radially unbounded and continuously

differentiable functions Vi: R
Ni → R+ for i, j = 1, 2, ..., n

such that the subsystems Σi, i=1, 2, ..., n, in the form of

ẋi = fi(x1, . . . , xn), xi∈R
Ni (2)

satisfy

∂Vi

∂xi

fi ≤ −αi(Vi(xi)) +

n
∑

j=1

σij(Vj(xj)), (3)

where σii = 0 for i = 1, 2, ..., n.

The dissipation inequality (3) says that each subsystem

Σi with the inputs xj , j 6= i, is iISS, and that Vi is an iISS

Lyapunov function for the disconnected subsystem Σi [2].

Let the operators A,S, D : s ∈ R
n

+ → R
n

+ be

A(s) = [α1(s1), α2(s2), . . . , αn(sn)]
T

S(s) =

[ n
∑

j=1

σ1,j(sj),

n
∑

j=1

σ2,j(sj), . . . ,

n
∑

j=1

σn,j(sj)

]T

D(s) = [s1+δ1(s1), s2+δ2(s2), . . . , sn+δn(sn)]T .
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(a) v̄1 and v̄2 are infinite. (b) v̄1 and v̄2 are finite.

Fig. 1. Two illustrative situations for (5) and (6).

The functions δi ∈ K∞ have yet to be determined.

Remark 1: Under the stronger assumption that αi ∈ K∞,

the subsystem Σi is guaranteed to be ISS, and the func-

tion Vi is an ISS Lyapunov function [23]. By definition

[2], an ISS system is iISS. Note that the function Vi is

qualified as an iISS Lyapunov function even when αi is

merely positive definite [2]. It is also important that the

function Vi is qualified as an ISS Lyapunov function when

lims→∞ αi(s) ≥ lims→∞

∑n

j=1 σij(s) [23].

IV. PHASE 2: STABILITY IN A RESTRICTED DOMAIN

Since the network in Section III is defined with sub-

systems which are not necessarily ISS, utilization of ISS

tools requires us to give up R
N in analyzing the domain

of attraction. Exploiting such tools, this section investigates

stability of the network Σ in a subset Z ⊆ R
N . The domain-

restricted stability secured in this section will be combined

with another development in the next section to establish

stability on the whole space R
N . Define the following set:

Z(v̄) = {x ∈ R
N : Vi(xi) < v̄i, i = 1, 2, ..., n}, (4)

where v̄ = [v̄1, ..., v̄n]T ∈ (0,∞]n, and the components v̄i ∈
(0,∞], i = 1, 2, ..., n, have yet to be determined. Note that

Z(v̄) = R
N if v̄ = ∞ is chosen. In order to deal with a

network involving non-ISS subsystems, we are interested in

making use of ISS tools only in a set Z(v̄) 6= R
n
+. It is not

difficult to verify the following theorem by restricting the

domain in the results of [21], [20], [4].

Theorem 1: Given v̄ ∈ (0,∞]n, suppose that there exist

δ1, δ2, ..., δn ∈ Q satisfying

D ◦ S(s) 6≥ A(s), ∀s ∈ R
n
+ \ {0} (5)

D ◦ S(v̄) ≤ A(v̄) (6)

Then the set Z(v̄) is positively invariant with respect to (1),

and the equilibrium x = 0 of Σ is AS with respect to Z(v̄).
The operators D ◦S and A are evaluated on the extended

space R
n

+ in (6). An alternative expression of (6) is

lim
s→v̄i

αi(s) ≥ (Id +δi) ◦
n

∑

j=1

lim
s→v̄j

σi,j(s), i=1, 2, ..., n.

The condition (6) can be interpreted in a geometrical picture

used in [5], [6], [3], [20]. Define

Ω = {s ∈ R
n
+ : −A(s) + S(s) ≪ 0}. (7)

which is called a decay set in [6], [18], [20]. The fulfillment

of (5) implies the existence of a non-empty Ω which is

illustrated by Fig.1 in the n = 2 case. The boundary layer

is given by the two curves l1: α1(s1) = σ12(s2) and l2:



α2(s2) = σ21(s1). The set Ω 6= ∅ divides R
2
+ \ {0} into two

disjoint sets. The existence of the functions δ1 and δ2 implies

non-zero distance between the two curves l1 and l2 except

at the origin. The vector v̄ belongs to Ω. Let v̄ be referred

to as a decay point. Figure 1 (a) depicts a case where we

can take v̄1 = v̄2 = ∞, while Figure 1 (b) illustrates (6) in

the case where both v̄1 and v̄2 are finite. In fact, v̄2 needs

to be finite in Figure 1 (b) since the decay set Ω is bounded

in the s2 component. This happens when Σ1 is not ISS.

Remark 2: The condition (5) looks like a matrix condi-

tion. Indeed, it is verified in [11] that (5) is equivalent to

M(s) 6≥ s, ∀s ∈ R
n
+ \ {0}, (8)

where the operators A⊖,M : R
n

+ → R
n

+ are defined by

M(s) = A⊖ ◦ D ◦ S(s), A⊖(s) =







α⊖
1 (s1)

α⊖
2 (s2)...

α⊖
n (sn)






.

In the case where A, S and D are linear, the operator M is

represented by a matrix. Then the condition (8) is reduced

to a spectral radius condition [3]. It is stressed that (6) is

not equivalent to M(v̄) ≤ v̄. In fact, M(v̄) ≤ v̄ cannot

guarantee D ◦ S(v̄) ≤ A(v̄) if v̄ contains ∞.

This paper aims at proving GAS of networks involving

non-ISS subsystems by means of the matrix-like condition

(5). The following holds true.

Proposition 1: Suppose that the origin x = 0 is GAS

and that (5) holds. Then there exists a vector v̄ ∈ (0,∞]n

satisfying (6). Moreover, for each x(0) ∈ R
N , there exists a

time TZ(x(0)) ≥ 0 such that x(t) enters and remains in the

set Z(v̄) after a time TZ(x(0)), i.e.,

x(t) ∈ Z(v̄), ∀t ≥ TZ(x(0)) (9)

and limt→∞ |x(t)| = 0 for all x(0) ∈ R
N .

In fact, the existence of v̄ ∈ (0,∞]n can be proved

using [19], [18] with sufficient small |v̄|. The GAS ensures

the finite-time convergence into Z(v̄) for any trajectories

of Σ. Theorem 1 guarantees that any trajectory entered

Z(v̄) remains there and moves toward x = 0. In this way,

Proposition 1 states that the behavior of trajectories can be

decomposed into two phases in explaining GAS of x = 0. Of

course, we cannot assume the GAS in advance in practical

situations. Therefore, to find a vector v̄ ∈ (0,∞]n achieving

(6) and to prove the finite-time convergence into the corre-

sponding set Z(v̄) are the key two points in rendering the

two-phase approach practically useful.

Remark 3: By virtue of Lemma 1, Theorem 1 can be

stated with δ ∈ P . The use of δ ∈ Q allows us to

simplify presentations later on, since the monotonicity of

M is ensured without referring to the existence of another

δ ∈ Q guaranteed by an original δ ∈ P .

Remark 4: In the case of v̄ = ∞, the positive invariance

of Z(v̄) guaranteed by Theorem 1 implies the forward

completeness of all solutions of (1). If αi ∈ K∞ holds for all

i = 1, 2, ..., n, the property (6) is satisfied for v̄ = ∞. In fact,

the vector v̄ = ∞ satisfies (6) only if all subsystems are ISS

[23]. It is also worth noting that the property (5) without

the knowledge of (6) guarantees local asymptotic stability

[19], [4] in the sense of a sufficiently small neighborhood of

x = 0. Due to one of the fundamental ISS characterizations

in [23], the property (6) implies that each subsystem Σi

restricted to the domain Z(v̄) is ISS with respect to input xj

(j 6= i) and state xi. Theorem 1 relies on the ISS small-gain

argument [13] in the domain Z(v̄).
Remark 5: Theorem 1 does not require the functions αi

to be of class K∞ in contrast to the previous ISS results

[5], [6], [3], [18] which amount to αi ∈ K∞, i = 1, 2, ..., n.

Recall that all subsystems are ISS and the set Ω is radially

unbounded [20], [8] when αi ∈ K∞ holds for all i =
1, 2, ..., n. Note that the same condition, namely, that α1, ...,

αn ∈ K∞ is implied by the assumptions in Theorem 3.17 of

[20], i.e., the irreducibility and σij ∈ K∞ \ {0} for all i, j.

V. PHASE 1: TRANSITIONAL PERIOD

The previous section has shown the idea of approaching

the GAS for the iISS network Σ by separating each trajectory

into two phases, and confirmed that the second phase is

the convergence to x = 0 secured by the ISS small-gain

regulation via (5). This section focuses on determining the

switching point from the first phase to the second phase, and

confirming that the first phase is a transitional period that can

be linked successfully to the second phase. More precisely,

A. an analytical formula for a decay point v̄ ∈ (0,∞]n

satisfying (6) and

B. finite-time convergence of all trajectories of (1) into

the decay set Z(v̄)

are established in this section. Both, A and B cannot be

treated as in the ISS case and hence require a different

procedure. For attaining A and B, in this paper we do not

want to introduce additional assumptions on the transitional

period [16]. It is desirable to somehow make use of (5) again

which is already used in the second phase. Adding the GAS

criterion in [11] is against the purpose of this paper.

Consider σ̃ij ∈ K ∪ {0}, i, j = 1, 2, ..., n, satisfying

lim
s→∞

n
∑

j=1

σ̃i,j(s) > 0, i=1, 2, ..., n (10)

σi,j(s) ≤ σ̃i,j(s), ∀s ∈ R+, i, j = 1, 2, ..., n (11)

σ̃i,i(s) = 0, ∀s ∈ R+, i = 1, 2, ..., n. (12)

Define the operators M̃, D̃, S̃ : R
n
+ → R

n
+ as

M̃(s) = A⊖ ◦ D̃ ◦ S̃(s)

D̃(s) = [s1+δ̃1(s1), s2+δ̃2(s2), . . . , sn+δ̃n(sn)]T

S̃(s) =

[ n
∑

j=1

σ̃1,j(sj),

n
∑

j=1

σ̃2,j(sj), . . . ,

n
∑

j=1

σ̃n,j(sj)

]T

,

where δ̃i ∈ Q, i, j = 1, 2, ..., n. Define v
[h] ∈ (0,∞]n as

v
[h] =











v
[h]
1

v
[h]
2...

v
[h]
n











= M̃h(∞) (13)



for integers h ≥ 1. We will make use of h. For n = 2, it

is proved in [9] that the choice v̄ = v
[1] achieves Items A

and B. However, extending this fact to n>2 with v
[h] is not

easy in spite of the freedom h. In fact, there is a counter-

example to the existence of h achieving A and B as shown

in Example 2 of Section VII. Therefore, this section aims

at demonstrating when and how v
[h] in (13) achieves Items

A and B. Note that we do not use M in defining v
[h]. We

have defined v
[h] using S̃ (i.e., σ̃i,j) instead of S (i.e., σi,j).

Property (10) guarantees that all components of v
[h] are not

zero. Recall that the phase change point we want to obtain

is v̄ ∈ (0,∞]n. Let

B(v[h]) = {i ∈ {1, 2, ..., n} : v
[h]
i < ∞}. (14)

Then we can prove the following straightforwardly from the

definition and the monotonicity of M̃ on R
n

+:

Lemma 2: It holds for all integers h ≥ 1 that

v
[h] ≥ v

[h+1] (15)

B(v[h]) ⊆ B(v[h+1]). (16)

D̃◦S̃(v[h])≤A(v[h]) ⇒ D̃◦S̃(v[h+1])≤A(v[h+1]) (17)

v
[1] = ∞ ⇔ v

[h] = ∞ (18)

B(v[1]) = ∅ ⇔ B(v[h]) = ∅. (19)

The next theorem shows that Item B is fulfilled.

Theorem 2: Let h be any integer h ≥ 1. Assume that

S̃ ◦ M̃(s) ≪ ∞, ∀s ∈ R
n
+ (20)

and (10), (11) and (12) are satisfied. If there exist δ̃i ∈ Q,

i = 1, 2, ..., n, such that

M̃(s) 6≥ s, ∀s ∈ R
n
+ \ {0} (21)

and B(v[h]) 6= ∅ hold, then Z(v[h]) is positively invariant

with respect to (1), and for each x(0) ∈ R
N , there exists

TZ(x(0)) ≥ 0 such that

x(t) ∈ Z(v[h]), ∀t ≥ TZ(x(0)) (22)

is satisfied.

In order to address Item A, we define

M̂(s) = A⊖ ◦ D̂ ◦ S̃(s).

D̂(s) = [s1+δ̂1(s1), s2+δ̂2(s2), . . . , sn+δ̂n(sn)]T

The following gives us a useful hint for attaining Item A:

Lemma 3: Assume that (20) holds, and that there exist

δ̂i ∈ Q, i = 1, 2, ..., n, such that

M̂(s) 6≥ s, ∀s ∈ R
n
+ \ {0}. (23)

are satisfied. Let δ̃i ∈ Q, i = 1, 2, ..., n, be such that

δ̃i(s) ≤ δ̂i(s), ∀s ∈ R+, i = 1, 2, ..., n (24)

δ̃i(s) < δ̂i(s), ∀s ∈ R+ \ {0}, i ∈ U (25)

where U = {i ∈ {1, 2, ..., n} : limτ→∞ αi(τ) < ∞}. Then,

for each s∈R
n
+, there exists an integer h≥1 such that

M̃h(s) ≪ ∞. (26)

It is also verified easily that (26) is achieved with h = n

if S̃ forms a cycle graph. Note that n is independent of s.

This fact is utilized for n = 2 in [9] to establish Items A and

B. These observations suggest use of the following Lemma

which certifies Item A for general graph topology.

Lemma 4: If there exists an integer h ≥ 1 such that

M̃h(s) ≪ ∞, ∀s ∈ R
n
+, (27)

then it holds that D̃ ◦ S̃(v[h]) ≤ A(v[h]).

Note that the monotonicity of M̃ implies M̃h+1(s) ≪ ∞
if M̃h(s) ≪ ∞ holds. It is stressed that (26) is different

from (27). In (26), the integer h may depends on s, while

(27) require h to be independent of s. Based on Lemma 4,

Item A can be achieved as follows:

Theorem 3: Let δ̃i ∈ Q and σ̃ij ∈ K ∪ {0}, i, j =
1, 2, ..., n, be functions such that (10), (11), (12) and

δi(s) ≤ δ̃i(s), ∀s ∈ R+, i = 1, 2, ..., n (28)

are satisfied. If there exists an integer h ≥ 1 satisfying (27),

then (6) holds with v̄ = v
[h] ∈ (0,∞]n.

The main message of Theorem 3 is that (6) can be derived

for v̄ defined with (13) from (5) even when some subsystems

are not ISS. In fact, if all subsystems are ISS with respect

to all the inputs xj (j 6= i) in the sense of

lim
s→∞

αi(s)≥(Id+δ̃i)◦
n

∑

j=1

lim
s→∞

σ̃i,j(s), i=1, 2, ..., n, (29)

then Theorem 3 holds for v̄ = v
[1]. Since the map M̃ is

monotone on R
n

; , i.e., x ≤ y implies M̃(x) ≤ M̃(y), the

property v
[1] ≤ ∞ implies M̃(v[1]) ≤ M̃(∞), which is

M̃(v[1]) ≤ v
[1] by definition. If (29) holds, we have A ◦

M̃ = D̃ ◦ S̃ on R
n

+ and arrive at D̃ ◦ S̃(v[1]) ≤ A(v[1]).
Thus the choice v̄ = v

[1] achieves (6). Here, the key is

A ◦ M̃(s) = D̃ ◦ S̃(s) which does not hold true for large

s when some subsystems are not ISS, i.e., when (29) is not

achieved. Therefore, in the absence of (29), the claim of

Theorem 3 is not obvious.

VI. MERGING TWO PHASES

We can establish GAS of Σ by combining the transient

and the stability with domain restriction demonstrated in the

previous sections. Theorems 1, 2 and 3 yield the following:

Theorem 4: If there exist functions δ1, δ2, ..., δn ∈ Q and

an integer h ≥ 1 such that (5) and

Mh(s) ≪ ∞, ∀s ∈ R
n
+ (30)

S ◦ M(s) ≪ ∞, ∀s ∈ R
n
+ (31)

are satisfied, then the equilibrium x = 0 of the network Σ
is GAS.

Property (30) holds with h = 1 only if all subsystems

are ISS. Choosing h > 1 allows us to deal with subsystems

which are not ISS. The GAS in Theorem 4 is established

by separating a trajectory into a transient and a subsequent

convergent phase. In the case of B(v[1]) = ∅, there is no



transient period. Notice that, due to Lemma 2, B(v[1]) = ∅
is equivalent to B(v[h]) = ∅ for all integers h ≥ 1.

Theorem 4 demonstrates that the matrix-like operator M

gives a sufficient condition for GAS of the iISS network.

It contrasts with the complete Lyapunov approach [11]

which resulted in a stability criterion imposing a small-

gain condition on all cycles in the network graph. When

all subsystems are ISS and (5) holds with δ1, δ2, ..., δn ∈ Q,

property (30) is guaranteed to hold with h = 1. This fact

conform to the previous ISS result [6].

Robustness with respect to disturbances are not addressed

by Theorem 4. The external signals invalidate Theorems 2

unless the effect of the disturbances is sufficiently small.

This observation is reported in [9] for n = 2 of iISS

systems, and in [16] for an input-to-output stability property.

Such a constraint on disturbances could be considered as a

natural requirement when we separate a trajectory into “the

transient” and the rest of the trajectory.

Remark 6: Property (31) is implied by

{

lim
s→∞

αj(s)=∞ ∨ lim
s→∞

n
∑

i=1

σi,j(s)<∞
}

, j =1, 2, ..., n.
(32)

In the case of n = 2, property (31) is guaranteed by (5).

If (5) is satisfied for n = 2, property (30) also holds with

h = 2. Hence, we can remove (30) and (31) completely

if n = 2. Note that (32) is identical with the assumption

made in the previous results for iISS networks [8], [11]. The

previous results for ISS subsystems also require (32) [5], [6].

Networks of iISS subsystems satisfying (32) often arise in

practical models by virtue of conservation through bounded

nonlinearity. Some examples are the Monod equation and

the Michaelis-Menten equation which are popular models of

growth and reaction rates of microorganisms and enzymes.

The rates are limited and described by bounded functions.

Application of the mass balance to a biochemical reactor

yields an interconnected system in which the decrease of

one concentration or population results in the increase of

another concentration, which amounts to (32) [7], [16].

VII. EXAMPLES

Example 1: Consider the network Σ specified by the

following functions satisfying (31):

α1(s) =
s

1 + s
, α2(s) =

6s

1 + s
, α3(s) =

6s

1 + s

σ12(s) =
2s

1 + s
, σ21(s) =

s

1 + s
, σ23(s) =

s

1 + s

σ31(s) =
s

1 + s
, σ11 = σ13 = σ22 = σ32 = σ33 = 0.

The number of subsystems is n = 3, and this network is

formed by two coupled cycle graphs. Subsystem Σ1 is not

ISS, while the other subsystems are ISS. It is verified that

(5) and (30) are achieved with δ1(s) = δ2(s) = δ3(s) =
0.54s and h = 2. Theorem 4 guarantees that x = 0 of Σ
is GAS. Now we compute a decay point v̄. Since S of Σ
has no zero rows, we can set σ̃i,j = σi,j , i, j = 1, 2, 3. Let

δ̃1(s) = δ̃2(s) = δ̃3(s) = 0.5s. Equation (13) gives

v
[1] =

[

∞ 1 1
3

]T
, v

[2] =
[

∞ 5
11

1
3

]T
.

For the vector v
[1] we obtain

A(v[1]) − D̃ ◦ S(v[1]) =
[

− 1
2

9
8 0

]T 6≥ 0.

Thus, the property (6) is not satisfied with v̄ = v
[1].

However, it is satisfied with v̄ = v
[2] since

A(v[2]) − D̃ ◦ S(v[2]) =
[

5
80 0 0

]T ≥ 0.

In fact, M̃2(s) ≪ ∞ holds for all s ∈ R
2
+. Lemma 4 ensures

that v̄ = v
[2] achieves (6). In the set Z(v̄) defined by (4)

with v̄ = v
[2], condition (5) serves as an ISS small-gain

condition. In the outside region, condition (30) guarantees

that any trajectory enters Z(v̄) in finite time.

Example 2: Consider Σ of n = 3 specified by

α1(s) = 4s, α2(s) = 2s, α3(s) =
2s

1 + s

σ12(s) = s, σ21(s) = s. σ31(s) = s

σ11 = σ13 = σ22 = σ23 = σ32 = σ33 = 0

which satisfies (31). This network consists of a cycle con-

taining Σ1 and Σ2, and a cascade in which the state of Σ1

is fed to Σ3. The subsystem Σ3 is not ISS. The condition

(5) holds for δ1(s) = δ2(s) = δ3(s) = ks if k < 2
√

2 − 1.

However, (30) does not hold for any h ≥ 1. Since S of Σ
does not contain zero rows, we set σ̃i,j = σi,j , i, j = 1, 2, 3.

Let δ̃1(s) = δ̃2(s) = δ̃3(s) = s. Then we obtain

v
[h] =

[

∞ ∞ ∞
]T

, h = 1, 2, ....

Since we have A(∞) = [∞,∞, 2]T and D̃ ◦ S(∞) =
[∞,∞,∞]T , property (6) is not satisfied by v

[h] for any

integer h ≥ 1. In fact, for s = [a, b, c]T we have

M̃2l+1(s)=









b
2l+1
a
2l

β
(

a
2l

)









, M̃2l+2(s)=









a
2l+1

b
2l+1

β
(

b
2l+1

)









for l = 0, 1, 2, ..., where

β(s) =

{ s

2 − s
, s ∈ [0, 2)

∞ , s ∈ [2,∞)
.

Hence, the integer h achieving (26) must depend on s as

Lemma 3 suggests. This fact prevents us from using Lemma

4 to establish GAS of Σ. On the other hand, Σ satisfies

α⊖
1 ◦ (Id + δ1) ◦ σ12 ◦ α⊖

2 ◦ (Id + δ2) ◦ σ21(s) < s,

∀s ∈ R+ \ {0}. (33)

According to [11], property (33) guarantees that x = 0 of Σ
is GAS. These facts reveal a case where a decay point v̄ ∈
R

n

+ cannot be computed as simple as v
[h] in (13) although

the network is actually GAS. In such a case, Proposition 1

suggests that one may find in a heuristic manner a vector

v̄ achieving (6), i.e., here an example is v̄ = [1, 1,∞]T .

However, it is not clear how the finite-time convergence into



the corresponding invariant set Z(v̄) can be verified unless

we introduce an additional assumption such as the one in

[11]. Note that we do not have the equivalence between

(5) and the small-gain condition in [11] for networks of

general graph topology. In Example 2, the weak stability of

a non-ISS subsystem is compensated by the strong stability

of ISS subsystems, but none of subsystems has bounded ISS

gain functions with respect to coupling inputs. In contrast,

Example 1 allows us to invoke Lemma 4 since the network

has ISS subsystems whose ISS gain function is bounded with

respect to coupling inputs. In this way, condition (30) plays

an important role in ensuring the practical usefulness of the

two phase approach.

VIII. CONCLUDING REMARKS

This paper has given a two-phase interpretation to the

mechanism of achieving GAS of a network in the presence of

non-ISS subsystems. It provides an alternative to the recent

result [11] on networks of iISS systems. The two phase

approach cannot address stability with respect to external

signals. Otherwise, the magnitude of external signals are

required to be sufficiently small. Nevertheless, an advantage

of the approach over the pure Lyapunov approach in [11] is

that it leads to a stability criterion which takes the matrix-like

form of the criterion developed previously for ISS networks

[5], [6], [15]. The two phase interpretation can be given for

iISS networks whenever the network is GAS. However, the

two phase approach is not always practically useful, as was

demonstrated in an example, where the proposed analytical

formula cannot provide a phase change point. It is worth

mentioning that the matrix-like criterion this paper focuses

on was investigated in [20], and in the presence of non-ISS

subsystems, the sufficiency of the matrix-like criterion for

GAS remained unsolved there.

This paper has used (3) in defining dissipation inequalities

of subsystems, which is sometimes called the summation

aggregation [6]. Another typical way to formulate dissipation

inequalities of subsystems is the maximization aggregation

which replaces
∑n

j=1 with maxj∈{1,2,...,n} in (3). It can be

verified that all the results in this paper remain valid for

the maximization aggregation. An additional favorable fact

is that the maximization aggregation allows us to replace (26)

with (27), i.e., h in Lemma 3 can be made independent of s.

Thus, (30) can be removed since it holds for sufficiently large

h. It is remarkable that, for the maximization aggregation,

without invoking the two phase approach, the authors have

succeeded in proving the matrix-like sufficient condition to

be sufficient for GAS of x = 0 of iISS networks in [11].
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ity of networks of iISS systems: construction of sum-type Lya-
punov functions.” IEEE Trans. Automat. Contr., vol.58, 2013, doi:
10.1109/TAC.2012.2231552.

[12] Z.P. Jiang, I. Mareels and Y. Wang, “A Lyapunov formulation of
the nonlinear small-gain theorem for interconnected ISS systems,”
Automatica, vol.32, pp.1211–1215, 1996.

[13] Z.P. Jiang, A.R. Teel and L. Praly, “Small-gain theorem for ISS
systems and applications,” Mathe. Contr. Signals and Syst., vol. 7,
pp.95–120, 1994.

[14] Z.P. Jiang and Y. Wang, “A generalization of the nonlinear small-gain
theorem for large-scale complex systems,” Proc. 2008 World Congress

on Intelligent Control and Automation, pp.1188–1193, 2008.
[15] I. Karafyllis and Z.P. Jiang, “A vector small-gain theorem for general

nonlinear control systems,” IMA J. Math. Control Info., vol. 28, pp.
309–344, 2011.

[16] I. Karafyllis and Z.P. Jiang, “A new small-gain theorem with an
application to the stabilization of the chemostat,” Int. J. Robust and

Nonlinear Contr, vol. 22, pp. 1602–1630, 2012.
[17] T. Liu, D.J. Hill, Z.P. Jiang, “Lyapunov formulation of ISS small-

gain in continuous-time dynamical networks,” Automatica, vol. 47,
pp.2088–2093, 2011.
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