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Small-gain conditions and the comparison principle

Björn S. Rüffer, Member, IEEE

Abstract—The general input-to-state stability (ISS) small-gain condi-
tion for networks in a trajectory formulation is shown to be equivalent to
the requirement that a discrete-time comparison system induced by the
gain matrix of the network is ISS. This leads to a comparison principle,
relating input-to-state stability of an artificial discrete-time system to
the same stability property of a continuous-time nominal system. As a
consequence, general small-gain conditions can now be verified by finding
ISS Lyapunov functions.

Index Terms—Stability of NL Systems, discrete-continuous comparison
principle, input-to-state stability

I. INTRODUCTION

Small-gain conditions are contraction conditions and are sufficient
for the stability of feedback interconnected systems. For nonlinear
systems they have been around at least since the 1960s starting with
[1]. In the input-to-state stability (ISS) framework such conditions be-
came available in the 1990s with [2], [3]. More recently, these results
have been extended to “networked” versions: The interconnection
of arbitrarily many ISS systems in arbitrary interconnection yields
again an ISS composite system, provided a generalized small-gain
condition holds [4], [5]. In a dissipative vector-Lyapunov formulation
it has since been shown that (integral) input-to-state stability of a
continuous-time comparison system carries over to the composite
system [6], [7]. More generally, (vector-) comparison principles allow
to infer stability properties from a usually lower order comparison
system to a higher order nominal system.

In this note we show that the generalized small-gain condition for
networks arising in the trajectory estimate and Lyapunov implication
formulation of ISS is in fact necessary and sufficient for the input-
to-state stability of an associated discrete-time comparison system.
This result stands out from standard comparison principles, as it
relates stability of an artificial discrete-time system with the stability
of a nominal, continuous-time system, whereas classical comparison
principles would compare continuous-time systems with continuous-
time systems (or discrete-time systems with discrete-time systems).
Furthermore, we may now utilize ISS Lyapunov functions to check
generalized small-gain conditions, as is demonstrated in an example.

The next section defines necessary notation. Section III recalls two
general small-gain theorems that give rise to a generalized, large-
scale small-gain condition. In Section IV the comparison system
is introduced, and the main result relating stability properties of
this system to the generalized small-gain conditions is proved. An
alternative approach to obtain parts of these main results is explained
in Section V, where also a lemma on “dimension doubling” is
provided, showing that it is no restriction to assume that gain matrices
have a zero diagonal. An example demonstrating the use of an ISS
Lyapunov function to verify the generalized small-gain condition and
the conclusions follow in Sections VI and VII, respectively.

II. NOTATION

By R+ we denote the non-negative real numbers, and Rn+ is
(R+)n, the positive orthant in Rn. This orthant induces a partial
order on Rn, which coincides with the component-wise order. For
vectors v, w ∈ Rn+ we have v ≤ w if for all i, vi ≤ wi. We have
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v < w if v ≤ w and v 6= w, and we write v � w to denote that
vi < wi for all i.

By w ⊕ v we denote max{w, v} with respect to the component-
wise ordering (i.e., a component-wise maximisation).

A continuous function γ : R+ → R+ is of class K if it is strictly
increasing and γ(0) = 0. The function Γ is of class K∞, if in addition
it is unbounded. By KL we denote the set of functions β : R2

+ → R+

that are of class K in the first argument and decreasing in the second,
such that for fixed s ∈ R+, limr→∞ β(s, r) = 0. By ‖ · ‖L∞ we
denote the essential supremum norm and ‖ · ‖ is the Euclidean norm.

III. INTERCONNECTED ISS SYSTEMS

Consider n ≥ 2 systems of the form

ẋi = fi(xi, u1, . . . , un, wi), i = 1, . . . , n, (1)

with xi, ui ∈ RNi , wi ∈ RMi and fi satisfying the usual
Carathéodory conditions for existence and uniqueness of solutions
[8].

These individual systems are subject to the following coupling: For
each i we let uj = xj for j 6= i and ui = 0. This does not mean
that each system necessarily depends on every other system (but it
might). In fact, fi may not depend on uj . This will become more
precise below.

Our aim is to provide a sufficient condition for ISS of the composite
system, which is

ẋ = f(x,w) (2)

with x = (xT1 , . . . , x
T
n )T , w = (wT1 , . . . , w

T
n )T , and

f(x,w) = (f1(x1, 0, x2, . . . , xn, w1)T , . . . ,

fn(xn, x1, . . . , xn−1, 0, wn)T )T .

We assume that each system is ISS and we give two qualitatively
equivalent formulations how this can be stated: The trajectory formu-
lation assumes that for each i there exist βi ∈ KL, γij ∈ (K∞∪{0}),
for j 6= i, and γiw ∈ (K∞∪{0}), such that for each initial condition
(t0, x

0
i ) the solution of the ith system starting at (t0, x

0
i ) satisfies

‖xi(t; t0, x0
i )‖ ≤βi(‖x0

i ‖, t− t0)+X
j 6=i

γij(‖xj‖L∞[t0,t]) + γiw(‖wi‖L∞) . (3)

The Lyapunov implication formulation instead asks that for each i
there exists a smooth function Vi : RNi → [0,∞) such that for some
ψ1
i , ψ

2
i ∈ K∞, ψ1

i (‖xi‖) ≤ Vi(xi) ≤ ψ2
i (‖xi‖) for all xi ∈ RNi ,

and that the following implication holds:

Vi(xi) ≥
X
j 6=i

γij(Vj(xj)) + γiw(‖wi‖)

=⇒ 〈∇Vi(xi), fi(xi, x1, . . . , xn, wi)〉 < 0.

(4)

While these two formulations are qualitatively equivalent, the gains
γij , γiw do not need to be the same in (3),(4). Instead of (3) we
could have taken the so-called “max-formulation”

‖xi(t)‖ ≤ max
j 6=i

˘
βi(‖x0

i ‖, t0),

γij(‖xj‖L∞[0,t]), γiw(‖wi‖L∞)
¯
,

(5)

again with possibly different gains.
We see that the interconnection structure in our network is in fact

described by the gains: Either there is a class K∞ gain from one
system to the other, indicating that there is an influence from one
system to the other, or the respective gain is zero, indicating that
there is no such influence. Thinking of the interconnection graph it
is natural to write down a weighted adjacency matrix Γ = (γij)

n
i,j=1
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(thereby taking γii = 0 for all i) to encode the interconnection
structure in the network.

This so-called gain matrix induces a monotone map Γµ : Rn+ →
Rn+, which we simply call the gain operator, by

(Γµ)i(s) := µ(γi1(s1), . . . , γin(sn))), for all s ∈ Rn+ . (6)

Here µ(s) = s1 + . . . + sn in case of (3),(4) and µ(s) =
max{s1, . . . , sn} in case of (5). In the following we will use the
subscripts + and ⊕ to make reference to one particular choice of
µ. Building on essentially this setup the following theorems can be
proved:

Theorem III.1 Let interconnected systems (1) satisfying (3) or (4)
be given. If there exists a K∞ function α such that for the map
D : Rn+ → Rn+, D(s)i = si + αi(si), the condition

(D ◦ Γ+)(s) � s, holds for all s ∈ Rn+, s 6= 0, (7)

then system (2) is ISS from w to x.

Theorem III.2 Let interconnected systems (1) satisfying (5) be given.
If the condition

Γ⊕(s) � s, holds for all s ∈ Rn+, s 6= 0, (8)

then system (2) is ISS from w to x.

For proofs see [4],[5] or [9], and [10], [11], [12], respectively. For
a, b ∈ Rn+ the condition a � b means that the component-wise ≥
ordering should not hold, i.e., that for some i, ai < bi. The condition
with (D ◦ Γµ)(s) := D(Γµ(s)) � s can be stated equivalently as
(Γµ ◦D)(s) � s, s 6= 0. For short we will sometimes write M � id
if a monotone map M : Rn+ → Rn+ satisfies M(x) � x for all
x ∈ Rn+, x 6= 0.

IV. COMPARISON SYSTEMS

It might seem odd to think of a comparison principle in anything
else but a Lyapunov framework, but the connection is certainly there:
Consider the systems

s+ = Γ+(s) + v , (9)

and, respectively,
s+ = Γ⊕(s)⊕ v . (10)

Such a system is ISS if and only if there exist β ∈ KL and γ ∈ K∞
such that for every s(0) ∈ Rn+, {v(k)}nk=1 ⊂ Rn+, and every k ≥ 0,

‖s(k)‖ ≤ β(‖s(0)‖, k) + γ(sup
l≥0
‖v(l)‖) . (11)

We have the following main result, which immediately implies
the discrete-time comparison principle for input-to-state stability of
networks.

Theorem IV.1 System (9) is ISS from v to s if and only if (7) holds.
System (10) is ISS from v to s if and only if (8) holds.

Corollary IV.2 (Comparison principle) Let interconnected sys-
tems (1) satisfying (3) or (4) or, respectively, (5) be given. If the
corresponding comparison system (9) or, respectively, (10) is ISS,
then the composite system (2) is ISS from w to x.

Note that in [4, Thm. 23] it already has been shown directly that
if Γ is irreducible, then Γ � id and global asymptotic stability of
the origin with respect to (9) for v ≡ 0 are equivalent. Our result
extends this previous result to the ISS framework. For the difficult
direction in the proof we show that systems (8),(9) are globally stable
(GS) and have the asymptotic gain property (AG). Together, GS and
AG are equivalent to ISS (see [13] for this result for continuous-time
systems and [14], [15] for a discrete-time version).

We stress that the discrete time domain of the comparison sys-
tems (9),(10) has nothing to do with the time domain of the
continuous-time nominal system (2).

Proof of Thm. IV.1: ISS implies the � conditions: If systems
(9),(10) are ISS, then in particular the origin is globally attractive
with respect to autonomous dynamics. By a result in [16, Prop. 4.1]
this implies that Γµ(s) � s for all s 6= 0.

Now we show that in case that (9) is ISS there exists an appropriate
operator D such that (7) holds. By assumption there exists γ ∈ K∞
such that for any s(0) ∈ Rn+ and input signal v(·) ≤ v we have

lim sup
k→∞

‖s(k)‖1 ≤ γ(‖v‖1) , (12)

where we have used the equivalence of norms on Rn, ‖ · ‖1 denoting
the 1-norm. Define a function α ∈ K∞ by α(r) := 1

2n
γ−1(r) and

define D : Rn+ → Rn+ by D(s)i = si+α(si), i = 1, . . . , n, s ∈ Rn+.
Fix r > 0 and consider the set Sr = {s ∈ Rn+ : ‖s‖1 =

P
i si =

r}. By construction for s ∈ Sr we have

D(s) = s+ (α(s1), . . . , α(sn))T ≤ s+ vr , (13)

with vr := ( 1
2n
γ−1(r), . . . , 1

2n
γ−1(r))T . Observe that ‖vr‖1 =

1
2
γ−1(r), or equivalently, r = γ(2‖vr‖1) > γ(‖vr‖1). Now (12)

implies that

(Γ+)(s+ vr) � s , for all s ∈ Sr . (14)

To see this assume the opposite. Then there exists an s∗ ∈ Sr such
that Γ+(s∗+vr) ≥ s∗. Consider the trajectory φ(·) of the dynamical
system w+ = Γ+(w + v) with initial value w(0) = s∗ and input
v(k) ≡ vr . Assuming w(k) ≥ s∗ we show inductively for k ≥ 0
that w(k + 1) = Γ+(w(k) + v(k)) ≥ Γ+(s∗ + vr) ≥ s∗. Since
‖s∗‖1 = r > γ(‖vr‖1) we have a contradiction to (12), so (14)
must hold.

Consider again an arbitrary s ∈ Sr . By (14) there exists an index
i ∈ {1, . . . , n} such that si > (Γ+(s + vr))i ≥ (Γ+(D(s)))i, the
last inequality by (13). This implies

(Γ+ ◦D)(s) � s , for all s ∈ Sr ,

and since r > 0 was chosen arbitrarily and
S
r>0 Sr = Rn+ \{0} the

claim follows.
The �-conditions imply ISS: We consider the summation formu-

lation (7), respectively, (9) first. By [16, Thm. 5.10] condition (7)
implies the existence of functions σi ∈ K∞, i = 1, . . . , n, and
α̃ ∈ K∞ such that with σ(r) = (σ1(r), . . . , σn(r))T , r ∈ [0,∞),
and D̃ : Rn+ → Rn+, D̃(s)i = si + α̃(si),

(D̃ ◦ Γ+)(σ(r))� σ(r) , for all r > 0 , (15)

where � denotes component-wise strictly less. Note that (15) can
again be written equivalently as

(Γ+ ◦ D̃)(σ(r))� σ(r) , for all r > 0 ,

with the same D̃. Another ingredient is that by [4, Lemma 13] there
exists a K∞ function φ such that

(id− Γ+)(w) ≤ v =⇒ ‖w‖ ≤ φ(‖v‖) . (16)

We start by showing that bounded inputs yield bounded trajecto-
ries: To this end assume that v(k) ≤ v ∈ Rn+ for all k ≥ 0. For any
such v and arbitrary s(0) ∈ Rn+ by (15) there exists an r > 0 such
that σ(r) ≥ s(0) and Ã(σ(r)) ≥ v, where we denote Ã = D̃ − id.

Now assume that s(k) ≤ σ(r) + Ã(σ(r)). This is obviously true
for k = 0. For k + 1 we compute

s(k + 1) = Γ+(s(k)) + v(k) ≤ Γ+(σ(r) + Ã(σ(r))) + v

≤ Γ+(σ(r) + Ã(σ(r))) + Ã(σ(r))

≤ σ(r) + Ã(σ(r)) .
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So by induction it follows that the trajectory s(·) is bounded.
Now for fixed initial condition s(0) and input bounded by v(·) ≤ v

let

s∗ := s∗(s(0), v) := sup
k≥0

s(k)

≤ sup
k≥0
{s(0),Γ+(s(k)) + v(k)}

≤ max{s(0),Γ+(s∗) + v} ≤ s(0) + Γ+(s∗) + v .

In other words, (id − Γ+)(s∗) ≤ s(0) + v. So by (16) we have
‖s∗‖ ≤ φ(‖s(0)+v‖) ≤ φ(‖s(0)‖+‖v‖) ≤ (φ◦(id+ρ))(‖s(0)‖)+
(φ ◦ (id + ρ−1))(‖v‖), the last step by a variant of the weak triangle
inequality [2], [10] with an arbitrary ρ ∈ K∞. In the last estimate
the functions φ ◦ (id + ρ) and φ ◦ (id + ρ−1) are of class K∞, so we
have obtained the GS property.

For the asymptotic behavior of a trajectory we obtain

s# := lim sup
k→∞

s(k) = lim sup
k→∞

`
Γ+(s(k)) + v(k)

´
≤ Γ+(s#) + v .

It follows that ‖s#‖ ≤ φ(‖v‖), and this is the AG property, which
together with the GS property is equivalent to ISS (cf. [14, Thm. 2]
or [15, Thm. 1], where AG is named K-asymptotic gain and GS is
named UBIBS).

The proof that (8) implies ISS of system (10) is slightly different,
but similar. The necessary ingredients are given by [16, Thm. 6.4],
which says that (8) is equivalent to the following two statements:

1) There exist functions σi ∈ K∞ such that (with the previous
notation),

Γ⊕(σ(r))� σ(r) , for all r > 0 .

2) There exists a function φ ∈ K∞ such that

w ≤ Γ⊕(w)⊕ v =⇒ ‖w‖ ≤ φ(‖v‖) .

The remainder of the proof is essentially a repetition of the arguments
given above.

V. RELATED APPROACHES

One reviewer was kind enough to point out that the “max”-version
contained in Theorem IV.1 and Corollary IV.2 can be derived using
an alternative approach based on the results presented in [17], [18].
The argument is as follows.

Let γij , γiw ∈ K∞ ∪ {0}, i, j = 1, . . . , n be given and consider
the continuous-time, time-delay system given by

xi(t) = max
j
γij(xi(t− 1))⊕ ui(t), i = 1, . . . , n, (17)

with xi(·), ui(·) ≥ 0, i = 1, . . . , n. Notably, (17) is a functional
difference equation. It’s relation to system (10) is as follows: For any
trajectory {s(k)}k≥0 of system (10), the initial conditions x(t) :=
(x1(t), . . . , xn(t))T = s(0) for all t ∈ (−1, 0] and the inputs defined
by u(t) := (u1(t), . . . , un(t))T = v(k) for all t ∈ (k − 1, k] and
integers k ≥ 0, produce a trajectory x(·) that satisfies at integer times

x(k) = s(k) for all k ≥ 0. (18)

Now, Theorem 3.1 in either of [17], [18] asserts that condition (8)
(equivalently, Γ⊕(s) ≥ s =⇒ s = 0) implies the ISS property of
the interconnected system (17) and hence of system (10) by virtue
of the correspondence (18). Moreover, [17], [18] provide a formula
for the ISS gain of system (10). This result extends to the fact that
any discrete-time system

x+ = F (x, u), F : Rn × Rm → Rn,

is ISS, for which an estimate of the form

|F (x, u)| ≤ Γ⊕(|x|)⊕G(|u|)

holds, where Γ⊕ � id is as above, G : Rm+ → Rn+ is monotone
and satisfies G(0) = 0, and |x| denotes the component-wise absolute
value of x ∈ Rn, i.e., |x| = max{x,−x}.

Two more remarks are in order. The first is an obvious fact, but
for sake of completeness, we state it as a remark.

Remark V.1 If the discrete time system

x+ = F (x)⊕ v (19)

is ISS from v to x, where F : Rn+ → Rn+ is monotone and continuous,
then for any monotone and continuous map G : Rn+ → Rn+ such that
G(0) = 0, the system

x+ = F (x)⊕G(v) (20)

is also ISS from v to x. Just the gain will be different and in general
depend on G. An analogous statement is true when ⊕ is replaced by
+ in (19),(20).

The second remark regards our general assumption that for Γ =
(γij)

n
i,j=1 we have γii = 0 for i = 1, . . . , n.

Remark V.2 The works [17], [18] explicitly consider the case γii 6=
0. For the purpose of the results in these references, this case is
indeed meaningful. In fact, all results in the literature on operators
of the form Γ+,Γ⊕ : Rn+ → Rn+ induced by matrices of K functions,
allow for this extension with no or minimal modifications, including
those results in [4], [5], [10], [11], [12], [16]. An alternative to these
modifications is the following Lemma V.3. However, for the results in
this note, which provide re-interpretation of Theorems III.1 and III.2
in terms of comparison principles, the case γii 6= 0 is not interesting,
because it is explicitly excluded by those theorems. Nevertheless, for
the sake of completeness we note that Theorem IV.1 also holds in the
case that the functions γii are chosen to be of class K∞.

The following lemma shows that for the purpose of the results
presented here or in [4], [5], [10], [11], [12], [16], [17], [18], one
can, without loss of generality, always assume that the diagonal of a
gain matrix Γ = (γij)

n
i,j=1 is zero. It should be noted that a similar

idea has been used before in [4, Remark 5.8].

Lemma V.3 (Dimension doubling) Let D,T : Rn+ → Rn+ be mono-
tone maps. Define D,S : R2n

+ → R2n
+ via

D

„
x
y

«
:=

„
D(x)
D(y)

«
and S

„
x
y

«
:=

„
T (y)
T (x)

«
. (21)

Then D ◦ T � id if and only if D ◦ S � id.

Note that in particular the case D = id is included, and we do
not require continuity. The map S can be thought of as the matrix„

0 T
T 0

«
and as such clearly has a zero-diagonal. A particular conse-

quence is that all results based on the condition T � id, (D◦T ) � id,
or one of their equivalent formulations (like the cycle condition in
one case, cf. [16]), are true also for operators induced by matrices
of gains that have non-zero diagonal. Via the construction (21) in
Lemma V.3, such matrices with non-zero diagonal can always be
embedded into matrices with zero diagonal, satisfying the same type
of stability condition. This extends in particular the results in [4], [5],
[10], [16], which throughout assumed that diagonal entries of gain
matrices be zero.

Proof: We will use the fact that by [16, Lemma 2.1] M � id
implies that for all positive integers k also Mk � id. Here Mk

denotes k-times application of M .
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For the first part of the proof, assume that D◦T � id, but that there
exists a z = (xT , yT )T ∈ R2n

+ , z 6= 0, so that (D ◦ S)(z) ≥ z. By
monotonicity then also (D◦S)2(z) ≥ z, implying that (D◦T )2(x) ≥
x and (D ◦ T )2(y) ≥ y. Since at least one of x and y is non-zero,
this contradicts the assumption, so we must have D ◦ S � id.

The second part is similar: Assume that D ◦ S � id but that there
exists an 0 6= x ∈ Rn+ such that (D◦T )(x) ≥ x. Let z = (xT , xT )T ,

then (D ◦ S)(z) =

„
(D ◦ T )(x)
(D ◦ T )(x)

«
≥
„
x
x

«
= z. The existence of

this z contradicts the assumption, so we must have D ◦ T � id.

VI. EXAMPLE

In this section we demonstrate the usefulness of Theorem IV.1, by
considering a nontrivial Γ+ : Rn+ → Rn+ and asking, whether or not
there exists a ρ ∈ K∞, such that for D : Rn+ → Rn+ defined by
D(s)i = si+ρ(si) we have D ◦Γ+ � id. To give a positive answer,
it is now sufficient to find an ISS Lyapunov function for system (9).

Example VI.1 Let n ≥ 2. Define Γ+ : Rn+ → Rn+ by`
Γ+(s)

´
i

=
1

4

`
s
1/i
i−1 + si+1

i+1

´
,

with the convention that s0 = sn+1 = 0. So, in the case n = 5 we
have

Γ+(s) =
1

4

0BBBB@
s22√

s1 + s33
3
√
s2 + s44

4
√
s3 + s55
5
√
s4

1CCCCA .

Claim: The function V (s) := maxi s
i! is an ISS Lyapunov function

for (9), i.e., there exist functions ψ1, ψ2, α, γ ∈ K∞ such that
1) ψ1(‖s‖) ≤ V (s) ≤ ψ2(‖s‖), and
2) V (Γ+(s) +v)−V (s) ≤ −α(‖s‖) +γ(‖v‖) for all s ≥ 0 and

u ≥ 0.
It is well known (see, e.g., [15, Thm. 1]) that a discrete time

system is ISS if and only if it admits a smooth ISS Lyapunov function.
Moreover, the existence of a merely continuous ISS Lyapunov function
is sufficient for ISS [15, Lemma 3.5].

Proof of the claim: The existence of ψ1, ψ2 ∈ K∞ is obvious. For
the first estimate in the second part we use the inequality (a + b +
c)k ≤ 3k max{ak, bk, ck}, which holds for all real a, b, c ≥ 0 and
all positive integers k. Maximization over i is always understood over
the range {1, . . . , n}.

Now consider

V (Γ+(s) + v)− V (s) = max
i

 
s
1/i
i−1

4
+
si+1
i+1

4
+ vi

!i!
−max

i
si!i

≤ max
i

max

(„
3

4

«i!
s
(i−1)!
i−1 ,

„
3

4

«i!
s
(i+1)!
i+1 , (3vi)

i!

)
−max

i
si!i

= max
i

max

(„
3

4

«(i+1)!

si!i ,

„
3

4

«(i−1)!

si!i , (3vi)
i!

)
−max

i
si!i

≤ max
i

max

(„
3

4

«(i−1)!

si!i , (3vi)
i!

)
−max

i
si!i

≤ 3

4
max
i
si!i −max

i
si!i + max

i
(3vi)

i! ≤ −1

4
max
i
si!i + max

i
(3vi)

i!

≤ −1

4
min

˘
max
i
si,max

i
sn!
i

¯
+ 3n! max{max

i
vi, (max

i
vi)

n!}

= −1

4
min

˘
‖s‖∞, ‖s‖n!

∞
¯

+ 3n! max
˘
‖v‖∞, ‖v‖n!

∞
¯
.

It follows that V is indeed an ISS Lyapunov function. By application
of Corollary IV.2 it can now be deduced that any large-scale

interconnection (2) of ISS subsystems (1) with a gain operator given
by Γ+ is ISS with respect to external inputs.

VII. CONCLUSIONS

In this note we have shown that generalized small-gain conditions
and comparison principles go hand in hand for ISS systems. Both
are analysis tools providing sufficient conditions for the stability of
coupled or large-scale systems. By showing that these conditions
are equivalent for the ISS case we have bridged the gap between
these seemingly different analysis tools. By means of an example we
have shown that discrete-time ISS Lyapunov functions are now at our
disposal to check generalized small-gain conditions as they have been
stated in [4], [5]. Extensions to more general stability frameworks like
input-to-output stability (e.g., [19]) are straight-forward.
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[10] B. S. Rüffer, “Monotone dynamical systems, graphs, and
stability of large-scale interconnected systems,” Ph.D. dissertation,
Universität Bremen, Germany, October 2007, available online at
http://nbn-resolving.de/urn:nbn:de:gbv:46-diss
000109058.
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