
Belief Propagation as a Dynamical System:
The Linear Case and Open Problems

Björn S. Rüffera, Christopher M. Kelletta,1, Peter M. Dowerb, Steven R. Wellera

aSchool of Electrical Engineering & Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
bDepartment of Electrical & Electronic Engineering, University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

Systems and control theory have found wide application in the analysis and design of numerical algorithms.
We present a discrete-time dynamical system interpretation of an algorithm commonly used in information
theory called Belief Propagation. Belief Propagation (BP) is one instance of the so-called Sum-Product
Algorithm and arises, e.g., in the context of iterative decoding of Low-Density Parity-Check codes. We
review a few known results from information theory in the language of dynamical systems and show that the
typically very high dimensional, nonlinear dynamical system corresponding to BP has interesting structural
properties. For the linear case we completely characterize the behavior of this dynamical system in terms
of its asymptotic input-output map. Finally, we state some of the open problems concerning BP in terms
of the dynamical system presented.

Key words: large-scale discrete-time systems, iterative decoding, sum-product algorithm
2000 MSC: 93C55 (94B05, 94B35)

1. Introduction

The application of systems and control theory
techniques has illuminated many interesting prop-
erties of iterative numerical methods. For exam-
ple, viewing Newton’s method as a Lur’e-type sys-
tem allowed the derivation of novel stability cri-
teria in [1]. Stability and convergence properties
of numerical integration routines have been stud-
ied in [2] and [1] and dynamical systems that solve
optimization problems were considered in [3]. Nu-
merical integration and linear and quadratic pro-
gramming are considered in [4] where it is shown
that many numerical methods can be interpreted
as proportional-derivative or proportional-integral
controllers for certain dynamical systems. Control
theoretic techniques are used to inform algorithm

∗Corresponding author; phone +61 2 4921 6090; fax +61
2 4921 6993

Email addresses: Bjoern.Rueffer@newcastle.edu.au

(Björn S. Rüffer), Chris.Kellett@newcastle.edu.au
(Christopher M. Kellett), P.Dower@ee.unimelb.edu.au
(Peter M. Dower), Steven.Weller@newcastle.edu.au
(Steven R. Weller)

design in [5], where simple control-Lyapunov func-
tions lead to improved methods for finding zeros of
nonlinear functions. In this paper, we turn our at-
tention to one of the most successful iterative algo-
rithms in digital communications and demonstrate
that a control theoretic approach provides impor-
tant insights into its behavior.

Iterative algorithms are ubiquitous in state-of-
the-art communications, especially in decoding of
so-called turbo and Low-Density Parity Check
(LDPC) codes. The (re-)discovery of these forward
error correction codes was a major breakthrough in
the 1990s as they approach Shannon’s channel ca-
pacity within a fraction of a decibel, a milestone
unachievable before. In the decoding context for
LDPC codes, the so-called Belief Propagation (BP)
algorithm and its variants have attracted much at-
tention [6, 7, 8] not only in communications, but
also in disciplines such as signal processing and
machine learning. Variations of BP have promis-
ing applications well beyond communications; e.g.,
in Kalman filtering and expectation maximization
[9, 10, 11, 7].

Although these algorithms usually work well,
only limited theoretical insight is available today

Preprint submitted to Systems&Control Letters November 27, 2008

to explain why. These algorithms admit fast paral-
lel implementations to efficiently approximate so-
lutions to so-called marginalization problems [6,
12, 7]. In broad terms, marginalization can be —
and most commonly is— used to approximate a-
posteriori densities, a task familiar from Kalman
filtering [13]. In general, however, it is unclear how
close these approximations are to true marginals,
or indeed whether these algorithms will converge
for any given input. In the decoding context as per
the setup of Figure 3, the goal of this marginal-
ization problem is to calculate so-called maximum
a-posteriori probabilities, based on a-priori proba-
bilities for bits received over a noisy channel. This
makes the otherwise computationally very hard de-
coding task feasible (in contrast to the inexpen-
sive encoding task). Whilst these iterative algo-
rithms have been reinvented many times and de-
spite the wide area of existing and proposed ap-
plications, analysis and design methods still rely
mostly on Monte Carlo simulations, instead of ex-
ploiting system theoretic results for the underlying
highly structured dynamical system.

Although several authors have studied iterative
decoding in a dynamical systems context, the un-
derlying high dimensional system equivalent to the
particular algorithm has been avoided. In part, this
may be due to the fact that its dimension easily ap-
proaches the order 105 or more. It is known that it-
erative decoding exhibits nonlinear dynamics. Pre-
vious work [14, 15, 16, 17, 18, 19] investigating the
dynamics of iterative decoding has involved exam-
ining lower dimensional models of the real dynam-
ical system. These lower dimensional models are
derived in a stochastic setting and rely on concen-
tration theorem results made possible by assuming,
for instance, that the dimension of the underlying
dynamical system tends to infinity. While these
previous approaches allow one to make statements
about the behavior and performance of a “typical”
system from a particular class, verifying the de-
sign of a specific system still relies on large-scale
Monte Carlo simulations. Convergence criteria and
uniqueness of fixed points for BP remains an active
area of research [20, 21, 22, 23, 24, 25, 26].

This work is a first step away from such stochas-
tic analysis where we study the full deterministic
dynamical system defining the BP algorithm. It
turns out that this system has interesting symme-
try properties. Our contribution is to present and
study a discrete-time nonlinear feedback dynamical
system formulation equivalent to the so-called Be-

lief Propagation (BP) algorithm. Here equivalence
is understood in the sense that there is a one-to-
one correspondence between trajectories of the dy-
namical system and the algorithm. With its long
history of studying dynamical systems and improv-
ing their behavior towards desired outcomes using
control strategies, we believe that the control com-
munity has much to offer to the understanding and
ultimate improvement of iterative algorithms and
BP in particular.

Without assuming any information theoretic
background we introduce the dynamical system of
interest. It is completely described by the so-called
parity-check matrix and is essentially linear, up
to one highly structured nonlinearity. We provide
some of the existing results in the information the-
ory literature in the language of deterministic dy-
namical systems. To illustrate the behavior of this
system, we consider the special case in which the
BP algorithm defines a linear system; i.e., when
the feedback nonlinearity becomes linear. For this
linear system, we can completely characterize the
input-output behavior of BP.

The paper is organized as follows: Section 2 in-
troduces the dynamical system central to this ar-
ticle. Here we also comment on input-output sta-
bility and describe a rather surprising result from
the information theory literature, couched in the
language of dynamical systems, related to the sym-
metry inherent in the BP algorithm. In information
theory, this result is known as the all-zero-codeword
assumption. Here it takes the form of a classifica-
tion of the input-output sets. Then in Section 3
we consider the case when the dynamical system
is linear. In an information theory context, this
special case corresponds to repeat codes, which are
the most easily understood error correction codes.
In Section 4 we state some of the open problems
regarding BP, translated into the language of con-
trol systems. Finally we conclude in Section 5. To
make the paper self-contained, in the complemen-
tary Appendix we provide more of the coding the-
ory background to aid readers in “decoding” some
of the coding literature.

2. The dynamical system of Belief Propaga-
tion

2.1. Definitions

Figure 1 shows the basic structure of the BP al-
gorithm, formulated as a deterministic dynamical

2

system as in (5), see below. A motivation from a
decoding perspective is given in Appendix A. All
blocks except the S-block are sparse and linear, and
the nonlinearity S is highly structured and also
sparse. All these blocks are completely described
in terms of one sparse matrix H and are entirely
deterministic. Let N denote the set of nonnegative

B S

P

BT +u y

x2

x1
+

Figure 1: Block diagram of the BP algorithm as a dynamical
system. The only nonlinear component is the operator S.

integers. For a positive integer n we denote by n
the set {1, . . . , n}. Throughout, F2 denotes the bi-
nary field1 with elements 0 and 1. Given a binary
matrix H = (hij) ∈ Fm×n

2 denote by q := |H| the
number of nonzero entries in H. Enumerating row-
wise from left to right and starting with the top
row, let n(k) = nH(k) = (n1(k), n2(k)) denote the
coordinates (i, j) ∈ m×n of the kth non-zero entry
in H, for k ∈ q. Let U denote the set of constant
functions u from N to Rn. As usual we identify
u ∈ U with points u ∈ Rn.

Remark1. In practice, H is typically sparse, or
in the terminology of information theory, has low
density. H is termed a (low-density) parity-check
matrix, cf. Appendix A.2. Usually, m is of the or-
der of R · n, where R is the so-called design rate
of the code described by H. Typical values include
R = 1

2 or 1
3 . H is called regular if every row has the

same number of nonzero entries and every column
has the same number of nonzero entries. If these
numbers, together with R, are kept fixed, q scales
as O(n). Typical values for n range between a few
hundred to tens of thousands. To give an impres-
sion of the dimension of the dynamical system that
we are about to define, some reasonable example
numbers are R = 1

2 , n = 20,000, and m = 10,000,
so that q would be of the order of 100,000.

1Addition and multiplication are given in the following
tables. Sometimes addition is denoted by the symbol ⊕
instead of +. It coincides with the XOR operation.

+ 0 1 · 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Define the matrix B = BH = (bij) ∈ Rq×n by

bij =

{
1 if n2(i) = j

0 otherwise .
(1)

Define the maps S = SH : Rq → Rq and P = PH :
Rq → Rq by

Pi(ξ) =
∑

j 6=i: n2(j)=n2(i)

ξj , and (2)

Si(ξ) = 2 atanh

 ∏
j 6=i: n1(j)=n1(i)

tanh
ξj

2

 (3)

for ξ ∈ Rq (cf. Appendix A.7 for background on the
particular form of (2) and (3)). The operator P
can be represented as matrix-vector multiplication.
With a slight abuse of notation we define the matrix
P = PH = (pij) ∈ Rq×q to be

pij =

{
1 if j 6= i, n2(i) = n2(j)
0 otherwise ,

(4)

so that we have P (ξ) = Pξ for all ξ ∈ Rq. In
Section 3 we explicitly construct these matrices for
a specific H.

In the following we will consider the time-
invariant discrete-time dynamical system given by

x+
1 = Px2 + Bu

x+
2 = S(x1)

y = BT x2 + u ,

(5)

where x1, x2 ∈ Rq, u, y ∈ Rn. We write x =
(xT

1 , xT
2)T . The structure of system (5) is depicted

in Figure 1.
In this work, we are only interested in input sig-

nals that are constant; i.e., u ∈ U . We do this be-
cause we are interested in how the BP algorithm it-
eratively processes a single input, the predominant
case in applications. However, in the last section of
the appendix we point out a case where it may be
useful to consider non-constant inputs.

The information theoretic interpretation of a
zero-initial condition is to start with an internal
state of “zero knowledge”, which matches with the
motivation of the algorithm, which we later de-
scribe in the appendix. Also, as this dynamical
system represents an algorithm implemented on a
computer and not a physical system, we may al-
ways choose this initial condition. Hence from now
on we assume x(0) = 0.

3

The input is a vector of a-priori log-likelihoods.
The output at each iteration is an approximation
to the a-posteriori log-likelihood vector. See the
brief discussion in the next subsection or the ap-
pendix for a more detailed account, especially Ap-
pendix A.7.

Associated with H is a bipartite graph, called
the factor graph, cf. Appendix A.5: Each row of H
defines a factor node, each column a variable node.
There is an edge between a factor and a variable
node, if the corresponding entry in H is one.

Denote the extended reals by R = R ∪ {±∞}.
Given the dynamical system (5) we define its
asymptotic input-output map to be the set valued
mapping G : U → 2Rn

, u 7→
{
w ∈ Rn

: y(tk, u) →
w for some {tk}k∈N as tk →∞

}
.

2.2. Results
The derivation of the sum-product algorithm

(SPA) or, respectively, belief propagation (BP), is
based on an observation in the context of so-called
marginalizations, cf. [6, 7, 27] or the appendix,
which we formulate here as a lemma.

Lemma 1. If the factor graph associated with H is
a tree then for each input u ∈ U , system (5) con-
verges to a limit point in a finite number of steps.
In particular, for the asymptotic input-output map
we have G(u) ∈ Rn for every u ∈ U .

In the tree case the asymptotic output (which is
obtained after finitely many steps) yields the exact
computation of so-called marginals. This motivates
why BP (or SPA) is used even in the case that the
factor graph contains cycles: One obtains only ap-
proximations to those marginals, but the hope is
that these approximations are in some sense good.

At this point we should remark that for sys-
tem (5), x = 0, u = 0 gives y = 0 for all times.
We have the following stability property, which in
particular implies a form of input-output stability
of the origin.

Proposition 2. Assume that the factor graph as-
sociated to H is a tree. Then there exists a con-
tinuous, non-decreasing function γ : R+ → R+,
satisfying γ(0) = 0, such that

‖y(t, u)‖ ≤ γ(‖u‖), ∀t ≥ 0.

Proof. If the factor graph is a tree, by Lemma 1,
BP converges in a finite number of steps, denote
this number by L. This number of steps L does not

depend on the initial conditions or inputs, but only
on the girth of the tree. For every finite t ≥ 0, the
mapping f : u 7→ y(t, u) is continuous and satisfies
f(0) = 0. Hence the function

γ(r) := max
u: ‖u‖≤r

max
t=0,...,L

‖y(t, u)‖

is continuous and non-decreasing. �
Concerning the interpretation of this result in a

decoding context (cf. Appendix A.7), the inputs
and outputs represent vectors of log-likelihood ra-
tios. A log-likelihood ratio r ∈ R has the follow-
ing interpretation: r = 0 denotes absolute uncer-
tainty about whether a bit should be a zero or a
one. Small non-zero values for r denote a slight but
uncertain preference to either zero (r > 0) or one
(r < 0). Large values for r, or even r = ±∞, de-
note strong confidence or certainty about the value
of the corresponding bit. Hence Proposition 2 says
that when the inputs to the algorithm contain lit-
tle or no knowledge about the vector of bits, then
this knowledge cannot be increased too much just
by processing the available log-likelihood vector.

The null space of H is a vector space (over F2)
which we denote by NH . The elements of NH are
called codewords. Define the hard decision operator
D : dom D → Fn

2 , by

Di(ξ) =

{
0 if ξi > 0
1 if ξi < 0 ,

(6)

where dom D ⊂ Rq is the set {ξ ∈ Rq : ξi 6= 0∀i}.
For each c ∈ NH we let Yc ⊂ Rq denote the open

set given by Yc := {ξ ∈ dom D : D(ξ) = c} . The
set Yc is referred to as a codeword set. For fixed
c ∈ NH we are interested in the set of inputs u ∈ U
so that the trajectory y(t, u) eventually reaches Yc.
Denote these regions by

Rc = Rc,H = {u ∈ U : ∃t ≥ 0 : y(t, u) ∈ Yc} . (7)

Lemma 3. For each c ∈ NH , the codeword set Yc

is invariant in the sense that Yc ⊂ Rc.

Proof. This is due to the output equation and
the assumption, that our dynamical system always
starts at x(0) = 0. �

The following result is a reformulation of what is
commonly known in communications as the all-zero
codeword assumption.

Theorem 4. For all c ∈ NH there exists a diago-
nal matrix T = T (c) ∈ Rq×q such that Rc = TR0,

4

where the diagonal elements of T are given by

tii =

{
−1 if cn2(i) = 1
+1 otherwise .

In other words, despite the fact that the BP algo-
rithm is a nonlinear system, the regions Rc are the
same size and shape for all c ∈ NH . Hence, since
0 ∈ NH , coding theorists typically restrict their at-
tention to the all-zero codeword when analyzing a
particular H. A proof of this result can be found
in [27, p.215, Lemma 4.90].

3. Linear case

Consider the case as per the (n − 1) × n ma-
trix in (8), where each row of H contains exactly
two non-zero entries. Then the product term in (3)
simplifies to tanh ξj

2 , where j 6= i. Thence, apply-
ing (3), Si(ξ) = ξj , for some j 6= i. That is, S is
a permutation operator. Note that (8) is a canoni-
cal form for matrices with two non-zero entries per
row, provided that the factor graph is connected.

H =

1 1 0 . . . 0
0 1 1 0 . . . 0
...

.
...

0 . . . 0 1 1 0
0 . . . 0 1 1

 . (8)

The error correction code defined by the matrix
H is the simplest error correction code available.
Imagine that we wish to transmit a binary value,
1 or 0, over a noisy communication channel. In an
effort to make sure the value is received reliably,
instead of transmitting the value once, we may, for
instance, transmit the value three times. On the re-
ceiving end, we can then take a majority vote and,
hopefully, be more confident that we correctly re-
ceived what was originally intended. Presumably,
the more times we repeat the transmission for a sin-
gle bit message, the better the receiver’s chances of
correctly guessing what was intended by the trans-
mitter. This scheme is referred to as a repeat-n
code, where n is the number of transmitted bits.
(More detail on the communication process is con-
tained in the Appendix.)

Now since the map x 7→ 2 atanh(tanh(x/2)) is the
identity, the operator S becomes linear and, again
with slight abuse of notation, can be represented

by matrix-vector multiplication S(ξ) = Sξ with the
matrix S = SH = (sij) ∈ Rq×q given by

sij =

{
1 if n1(i) = n1(j)
0 else .

(9)

System (5) reduces to the linear system

x+ =
[
0 P
S 0

]
x +

[
B
0

]
u

y =
[
0 BT

]
x + u .

(10)

Since the factor graph for any repeat code repre-
sented by a parity-check matrix of the form (8) is
a tree , we have according to Lemma 1, for each
u ∈ U an equilibrium point x∗ = x∗(u) satisfying

x∗ =
[
0 P
S 0

]
x∗ +

[
B
0

]
u . (11)

Lemma 5. The matrices
[
0 P
S 0

]
and PS are

nilpotent, and for k ≥ 0 the (i, j)th entry of (PS)k

is given by

((PS)k)ij =

1 if i is even and j = i + 2k

or if i is odd and j = i− 2k

0 otherwise .

(12)

Proof. Induction over k for equation (12); then
nilpotency follows. �

Now equation (11) can be rewritten to

x∗ =
[

I −P
−S I

]−1 [
B
0

]
u =

∞∑
k=0

[
0 P
S 0

]k [
B
0

]
u .

(13)
Using basic linear algebra we obtain

y∗ =
[
0 BT

](∞∑
k=0

[
0 P
S 0

]k
)[

B
0

]
u + u (14)

= BT
(
S
∑
k≥0

(PS)k
)
Bu + u . (15)

From Lemma 5 it follows that the infinite sums
in (13)–(15) consist of only finitely many nonzero
terms.

Example 1. Let

H =

11 12 0 0
0 13 14 0
0 0 15 16

 , (16)

5

which corresponds to a repeat-4 code. The su-
perscripts indicate the enumeration n defined in
Section 2. For example, (n1(1), n2(1)) = (1, 1),
(n1(2), n2(2)) = (1, 2), (n1(3), n2(3)) = (2, 2), and
so on. For the repeat-4 code given above, we have
B,S, and P given by, respectively,

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 ,

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

and

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

 .

Then the asymptotic input-output map is given by
the matrix

BT
(
S
∑
k≥0

(PS)k
)
B + I =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

An example trajectory of the dynamical system cor-
responding to the parity-check matrix (16) is given
in Figure 2, where u = (1, 2, 3,−4)T .

0 1 2 3 4 5 6 7 8 9 10

−4

−3

−2

−1

0

1

2

3

4

5

6

time

LL
R

LLR output bit 1
LLR output bit 2
LLR output bit 3
LLR output bit 4

Figure 2: Dead-beat convergence of the per bit (output) log-
likelihood ratios (LLRs) yi(t) (t = 0, . . . , 10) to the sum of
the input LLRs ui for Example 1.

The example provides the asymptotic input-output
behavior of an iterative BP decoder for a repeat-4

code. The interpretation of this result might seem
odd at first, since instead of averaging the inputs
and assigning this average to every output, the sum
of all inputs is assigned to every output. The expla-
nation lies in the representation of the input per-
bit probabilities: ui represents a log-likelihood ra-

tio, i.e., a number of the form ui = log p
(i)
0

p
(i)
1

, where

p
(i)
0 + p

(i)
1 = 1 (cf. Appendix A.7). If we now com-

pute the probability that the first bit and the sec-
ond bit and the third bit and so on are, say the zero
bit, we compute a product, r0 = p

(1)
0 p

(2)
0 p

(3)
0 · · · ,

and similarly, r1 = p
(1)
1 p

(2)
1 p

(3)
1 · · · . Now r = (r0, r1)

in general will not satisfy r0 + r1 = 1, i.e., not rep-
resent a probability distribution, so that we would
have to normalize to r̃ = 1

r0+r1
· r. The log-

likelihood ratio l = r0
r1

is not altered by this scaling,
and it is this log-likelihood ratio that the asymp-
totic input-output map assigns to every output.

Of course, this result generalizes easily to repeat-
n codes.

Theorem 6. For a repeat-n code represented by a
parity-check matrix H in canonical form (8), the
asymptotic input-output-map G is given by G(u) =
Eu, where E denotes the square matrix whose en-
tries are all 1.

Proof. From the explicit formula (12) for (PS)k

in Lemma 5 we see that the (i, j)th entry of the
matrix

∑
k≥0(PS)k is a one if i is even and j ∈

i + 2N, or i is odd and j ∈ i − 2N, and zero oth-
erwise. Multiplication by S from the left swaps
every two consecutive rows, so that we obtain(
S
∑

k≥0(PS)k
)

ij
= 1 if i is odd and j ∈ i+1+2N,

or if i is even and j ∈ i− 1− 2N, and 0 otherwise.
Multiplication by BT from the left and B from the
right and addition of the identity then immediately
gives E, the all-one matrix. �

4. Open Problems

In this section we state a few problems that, to
our knowledge, are still unanswered in information
theory, but of great interest for applications and are
indicative of the types of possible contributions for
control theory in this area.

Problem P1 — Quantification of Decoding Perfor-
mance

One measure of the quality of a decoder is re-
lated to how many (incorrectly) received transmis-

6

sions can be decoded to an actual codeword. For
an iterative decoder this can be phrased as: What
set of inputs u does the iterative decoder ultimately
map to a codeword? In light of Theorem 4, one can
reasonably restrict this question to: What set of
inputs u does the iterative decoder ultimately map
to the all-zero codeword?

As an alternative to the above general problem,
which essentially asks for a computation of a con-
trollable set, it would be of interest to know what
fraction of the input space the iterative decoder
maps to a valid codeword (i.e., an element of NH).
Since this fraction is clearly overbounded by the in-
verse of the number of codewords, or 1/|NH |, (based
on Theorem 4 and completely partitioning the in-
put space) one might consider the fitness measure

fH := lim
r→∞

|NH |λ(R0 ∩Br(0))
λ(Br(0))

, (17)

as a measure of how close BP performs to maximum
likelihood decoding, where Br(0) denotes a ball of
radius r around the origin and λ the Lebesgue mea-
sure. Clearly, fH ∈ [0, 1] and ideally fH approaches
1.

Problem P2 — Optimizing Parity-Check Matrices
A given code can be represented by different

parity-check matrices. So it is natural to ask if a
given H can be modified to enlarge the region R0 or
the fitness measure fH . A related question involves
quantifying the effects of cycles in the parity-check
matrix, doubling factor nodes, adding linear com-
binations of existing rows, etc.

Problem P3 — Control
Naturally, the question arises as to whether or

not it is possible to improve the performance of the
iterative decoder via the judicious use of control.
For example, is it possible (and computationally
feasible) to change the feedback loop in the dynam-
ical system (5) in order to force faster convergence?
Furthermore, can we force faster convergence with-
out shrinking the sets Rc? On the other hand,
might it be possible to trade off speed of conver-
gence for enlarging the measure (17)?

Problem P4 — Performance Measures in Informa-
tion Theory

Most tools used to analyze performance of LDPC
codes rely on large-scale Monte-Carlo simulations;
e.g., bit-error-rate plots, so-called density evolution,

and ExIT charts all require the processing of a very
large set of random inputs u. Quantifying the fit-
ness measure or similar quantities in terms of the
so-called channel parameter, e.g, by replacing the
Lebesgue measure in (17) by a different measure.
This may provide a way to short-circuit lengthy
Monte-Carlo runs.

5. Conclusions

The sum-product algorithm is in widespread use
in signal processing applications from Kalman fil-
tering to expectation maximization. In particular,
under the moniker of belief propagation (BP) it has
revolutionized error correction coding. Error cor-
rection codes have been demonstrated to perform
within a fraction of a decibel of the fundamental
limit predicted by Shannon’s noisy coding theorem.
However, these codes require hundreds of hours for
both design and validation, particularly as design
is currently more art than science, due in part to a
paucity of results on the iterative processing of BP.
Furthermore, the demonstrated high-performance
codes typically are so long (i.e., contain so many
bits per codeword) that they are completely im-
practical for most applications.

This work represents a first step in understand-
ing the BP algorithm as a dynamical system with
the aim of developing principled design tools. To-
ward this end, we have shown how to cast the BP
algorithm as a dynamical system. Furthermore, we
have considered a special case where the BP algo-
rithm reduces to a linear system. In this special
case, we are then able to completely characterize
the convergence behavior of BP.

We identified some of the open problems in in-
formation theory and cast them in control theoretic
terms. Control theory seems to be the natural set-
ting to consider these type of problems and with its
long history of considering iterative discrete-time
control systems, it is likely to make useful contri-
butions to the information theory field.

6. Acknowledgments

B.S. Rüffer, C.M. Kellett, and S.R. Weller
have received support from the Australian Re-
search Council (ARC) under grant DP0771131.
P.M. Dower has received support from the ARC
under grant DP0880494.

7

References

[1] K. Kashima, Y. Yamamoto, System theory for numeri-
cal analysis, Automatica 43 (7) (2007) 1156–1164.

[2] A. M. Stuart, A. R. Humphries, Dynamical systems and
numerical analysis, Vol. 2 of Cambridge Monographs on
Applied and Computational Mathematics, Cambridge
University Press, Cambridge, 1996.

[3] R. W. Brockett, Dynamical systems that sort lists, di-
agonalize matrices, and solve linear programming prob-
lems, Linear Algebra and its Applications 146 (1991)
79–91.

[4] A. Bhaya, E. Kaszkurewicz, Control perspectives on nu-
merical algorithms and matrix problems, Vol. 10 of Ad-
vances in Design and Control, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2006.

[5] A. Bhaya, E. Kaszkurewicz, A Control-Theoretic Ap-
proach to the Design of Zero Finding Numerical Meth-
ods, IEEE Transactions on Automatic Control 52 (6)
(2007) 1014–1026. doi:10.1109/TAC.2007.899109.

[6] F. R. Kschischang, B. J. Frey, H.-A. Loeliger, Factor
graphs and the sum-product algorithm, IEEE Transac-
tions on Information Theory 47 (2) (2001) 498–519.

[7] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping,
F. Kschischang, The factor graph approach to model-
based signal processing, Proceedings of the IEEE 95 (6)
(2007) 1295–1322.

[8] J. Yedidia, W. Freeman, Y. Weiss, Constructing free-
energy approximations and generalized belief propa-
gation algorithms, IEEE Transactions on Information
Theory 51 (7) (2005) 2282–2312.

[9] J. Dauwels, S. Korl, H.-A. Loeliger, Expectation max-
imization as message passing, in: Proc. of the IEEE
International Symposium on Information Theory ISIT,
2005, pp. 583–586. doi:10.1109/ISIT.2005.1523402.

[10] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm,
J. Roy. Statist. Soc. Ser. B 39 (1) (1977) 1–38.

[11] A. Eckford, The factor graph EM algorithm: applica-
tions for LDPC codes, in: 6th IEEE Workshop on Sig-
nal Processing Advances in Wireless Communications,
2005, pp. 910–914. doi:10.1109/SPAWC.2005.1506272.

[12] H.-A. Loeliger, An introduction to factor graphs, IEEE
Signal Processing Magazine 21 (1) (2004) 28–41.

[13] R. E. Kalman, A new approach to linear filtering
and prediction problems, Transactions of the ASME–
Journal of Basic Engineering 82 (Series D) (1960) 35–
45.

[14] D. Agrawal, A. Vardy, The turbo decoding algorithm
and its phase trajectories, IEEE Transactions on Infor-
mation Theory 47 (2) (2001) 699–722.

[15] M. Fu, Stochastic analysis of turbo decoding, IEEE
Transactions on Information Theory 51 (1) (2005) 81–
100.

[16] C. M. Kellett, S. R. Weller, Bifurcations and EXIT
charts for the binary erasure channel, in: Proceedings of
IEEE International Symposium on Information Theory,
Seattle, WA, USA, 2006, pp. 2559–2563.

[17] C. M. Kellett, S. R. Weller, Bifurcations in iterative
decoding and root locus plots, IET Control Theory and
its Applications.

[18] L. Kocarev, F. Lehmann, G. M. Maggio, B. Scanavino,
Z. Tasev, A. Vardy, Nonlinear dynamics of iterative
decoding systems: Analysis and applications, IEEE

Transactions on Information Theory 52 (4) (2006)
1366–1384.

[19] X. Zheng, F. C. M. Lau, C. K. Tse, S. C. Wong, Study
of bifurcation behavior of LDPC decoders, Internat. J.
Bifur. Chaos Appl. Sci. Engrg. 16 (11) (2006) 3435–
3449.

[20] T. Heskes, On the uniqueness of loopy belief propaga-
tion fixed points, Neural Computation 16 (11) (2004)
2379–2413.

[21] A. Ihler, Accuracy bounds for belief propagation, in:
Proceedings of the 23th Conference on Uncertainty
in Artificial Intelligence UAI 2007, Vancouver, BC
Canada, 2007.

[22] A. T. Ihler, J. W. Fisher, A. S. Willsky, Loopy belief
propagation: Convergence and effects of message errors,
Journal of Machine Learning Research 6 (2005) 905–
936.

[23] J. M. Mooij, H. J. Kappen, Sufficient conditions for con-
vergence of the sum-product algorithm, IEEE Transac-
tions on Information Theory 53 (12) (2007) 4422–4437.

[24] N. Taga, S. Mase, Applications of Gibbs measure theory
to loopy belief propagation algorithm, in: A. Gelbukh,
C. A. Reyes-Garcia (Eds.), Proceedings of the 5th Mex-
ican International Conference on Artificial Intelligence
MICAI 2006: Advances in Artificial Intelligence, Vol.
4293, Apizaco, Mexico, 2006, pp. 197–207.

[25] S. C. Tatikonda, M. I. Jordan, Loopy belief propaga-
tion and Gibbs measures, in: Uncertainty in Artificial
Intelligence, Morgan Kaufmann, 2002, pp. 493–500.

[26] Y. Weiss, W. Freeman, On the optimality of solutions
of the max-product belief-propagation algorithm in ar-
bitrary graphs, IEEE Transactions on Information The-
ory 47 (2) (2001) 736–744. doi:10.1109/18.910585.

[27] T. Richardson, R. Urbanke, Modern Coding Theory,
Cambridge University Press, New York, 2008.

[28] Signal Processing Microelectronics,
http://sigpromu.org/systemanalysis/.

[29] International ISBN Agency, ISBN Users’ Manual Inter-
national edition, available online at http://www.isbn-
international.org/ (2005).

A. Background on iterative decoding

This appendix provides a gentle introduction to
the elements of coding theory necessary to further
investigate iterative decoding in the coding litera-
ture.

A deeper treatise of the material in this appendix
can be found in the book [27]. Some example Mat-
lab code implementing material of this appendix as
well as of Sections 2 and 3 is available online at
[28]. Regarding the notation there is to say that
both the control and the information theory com-
munities have their canonical uses for the letters
X and Y , in both lower and upper case. To avoid
introducing unnecessary non-standard notation, we
switch officially at this point to the information the-
ory meaning of these letters.

We start with an illustrative example of channel
coding, i.e., how one might deliberately introduce

8

redundancy to be able to tell if a transmitted mes-
sage has been corrupted during during transmission
over a channel. Ultimately one would also like to
be able to correct errors that have occurred during
the transmission of a message.

Example 2. The redundancy might be chosen such
that certain constraints are satisfied, e.g., ISBN-13,
the international standard book number [29] con-
sists of thirteen decimal digits d1d2 . . . d13, where
the last digit d13 is computed as

d13 ≡ −
12∑

i=1

widi mod 10 . (18)

Here the weights wi are given by

wi =

{
1 if i is odd
3 if i is even .

We could equivalently write (18) as a parity-check
equation for all digits, i.e.,

13∑
i=1

widi ≡ 0 mod 10 . (19)

We observe that if two 13 digit numbers, d =
d1 . . . d13 and c = c1 . . . c13, satisfy parity-check
equation (19), then also their sum and multiples
(that is, element-wise, modulo 10) will satisfy this
equation, due to its linear nature. Given a 13 digit
number, based on (19) we can tell whether or not
this number is a valid ISBN, so within certain lim-
itations we are able to tell that the transmission of
the number over a channel (scanning a bar code in
this case, e.g.) was successful or not. The set of so-
lutions (i.e., the nullspace) of (19) is called a code,
and individual solutions are codewords. These are
the very basics of linear parity-check codes.

Here is the general channel coding problem: To
transmit a message m, say a binary vector of length
k, the message m is augmented with a redundant
vector r(m), and the vector x = (mT , r(m)T)T

is transmitted. Now the channel will corrupt the
transmitted message x. The channel could be, e.g.,
transmission via radio frequency, or the result of
scanning a bar-code. The receiver then can use the
augmented (redundant) information to attempt to
recover those parts of the message that have been
lost or corrupted during transmission. The block
diagram in Figure 3 shows the usual digital com-
munications setup. We will consecutively consider

each of the blocks in Fig. 3 in the sequel. The con-
nection to the dynamical system formulation (5) is
made in Section A.7.

Encoder DecoderEstimatorModulation
+
Noise

Channel

m x = Gm x̃ = BPSK(x) y = x̃ + z
z ∈ N (0,σ2)

P (x̃i|yi), σ̂ x̂(y, σ)

σ σ̂ = σ

Figure 3: Channel coding essentials.

A.1. Notation

To ease notation, for functions f : Fn
2 → R, x 7→

f(x) we introduce the so-called not-sum or sum-
mary operation, cf. [6],∑

∼xi

f(x) :=
∑

x1,...,xi−1,xi+1,...,xn

f(x) , (20)

where x = (x1, . . . , xn)T . For a given set A the
indicator function 1A is defined by

1A(x) =

{
1 if x ∈ A

0 otherwise .

A.2. Linear block codes and parity-check matrices

A binary linear parity-check code is defined
through a weighted sum; i.e., solutions x =
(x1, . . . , xn)T of

n∑
i=1

wixi = 0 , (21)

with wi, xi ∈ F2, the binary field. Again, linearity
can easily be seen. In fact, the code defined by
(21) is an (n − 1)-dimensional vector subspace of
Fn

2 , provided at least one wi is nonzero.
A linear block code C of length n and rate R =

k/n, k < n, is a vector subspace of dimension k in
Fn

2 . The dimension k determines that we can choose
k bits arbitrarily and the remaining n − k bits in
each codeword will be determined by the structure
of the code; i.e, we can consider Fk

2 as the vector
space of possible messages that we can send, before
any parity-check information is appended. Clearly,
there are exactly 2k distinct possible messages.

The code C can be described as the nullspace of
a parity-check matrix H ∈ F(n−k)×n

2 , so that C =
{c ∈ Fn

2 : Hc = 0}, or by a generator-matrix G ∈
9

Fn×k
2 , that maps message vectors to codewords; i.e.,

C = {Gm : m ∈ F k
2 }.

In general, for every parity-check matrix there
is no unique choice of generator matrix and vice
versa. However it is always possible to calculate
a parity-check matrix from a generator matrix and
vice versa [27, p.36].

A binary low-density parity-check (LDPC) code
is a binary linear block code C represented by a
sparse parity-check matrix H. This sparsity is cru-
cial to the decoding described in Section A.6: The
factor graph corresponding to a sparse matrix H
has only few edges, hence the message passing along
those edges in Section A.6 will involve fewer mes-
sages.

A.3. BPSK and a-priori likelihoods

Now that we have a code and codewords, we still
have to transmit binary vectors over a noisy chan-
nel. Take, e.g., the additive white Gaussian noise
(AWGN) channel, a popular choice in information
theory.

First binary bits are mapped to channel symbols.
For the AWGN channel the channel symbols are
real numbers, representing, e.g., the amplitude of
a sent or received analogue signal at certain time
instances. Here we can use so-called binary phase
shift keying (BPSK), which maps x ∈ Fn

2 to x̃ ∈ Rn

per
xi 7→ x̃i = (−1)xi . (22)

The channel then adds some noise realization, i.e., a
sample drawn from a N (0, σ2) distribution to each
channel symbol, before the receiver sees it. So for
each channel input x̃i ∈ R the channel output is
yi = x̃i + z, where z ∈ N (0, σ2). Here σ2 is a chan-
nel parameter, namely the variance of the channel
noise, and is assumed to be known at the receiver.

If σ2 is known on the receiver side, it is possible
to compute pYi|Xi

(yi, xi), the probability density
corresponding to the cumulative conditional prob-
ability distribution (xi, yi) 7→ P (Yi≤yi,Xi=xi)

P (Xi=xi)
. Note

that we have switched to a probabilistic setting in
order to reflect that the receiver side doesn’t know
which codeword has been sent. The receiver only
knows that some realization of a random variable
X has been sent, where X takes values in the set of
codewords. The ratio

ri :=
pYi|Xi

(yi, 0)
pYi|Xi

(yi, 1)
(23)

is called the a-priori likelihood ratio. Its com-
putation requires knowledge of σ2. Under the as-
sumption that pXi

(1) = pXi
(0) the right hand side

of (23) can be rewritten as

ri =
pXi|Yi

(0, yi)
pXi|Yi

(1, yi)
. (24)

A simple decoding approach assigns the binary-
valued guess, x̂i, to 0 or 1 according to the likeli-
hood (either ri > 1 or ri < 1). By verifying whether
Hx̂ = 0 or not, the receiver can see if the received
vector is a valid codeword. If the computed esti-
mate x̂ is not a codeword, then some more involved
decoding has to be performed, to hopefully recover
the transmitted codeword.

A.4. Maximum a-posteriori probability (MAP) de-
coding

The idea of the MAP decoding approach is to
compute a-posteriori probabilities/likelihoods for
every bit and then choose that value for the bit
which maximizes this probability.

Let us consider a simple example: A single parity
check node. For the parity-check matrix

H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 (25)

the first check-equation imposed is

x1 + x2 + x4 = 0 , xi ∈ F2 , (26)

so that a valid codeword x has to satisfy equa-
tion (26).

We make the following assumptions:

A1 the channel is memoryless:
pY |X(y, x) =

∏
pYi|Xi

(yi, xi)
A1 for all y ∈ Rn and xi ∈ F2 we are given

pYi|Xi
(yi, xi)

A1 uniform priors: pX(x1) = pX(x2) for x1, x2 ∈
C, pX(x) = 0 for x /∈ C

Bit-wise maximum a-posteriori (MAP) decoding
chooses for each bit the following best estimate (cf.
[27, p.57]):

x̂i = arg maxxi∈F2
pXi|Y (xi, y) . (27)

By the law of total probability this is

= arg maxxi∈F2

∑
∼xi

pX|Y (x, y) ,

10

where the sum is taken over all xj , j 6= i, cf. (20).
Application of Bayes’ rule yields

= arg maxxi∈F2

∑
∼xi

pY |X(y, x)
pX(x)
pY (y)

and using assumption A3 and the fact that pY (y)
is a constant in this formula, we have

= arg maxxi∈F2

∑
∼xi

pY |X(y, x)1C(x)

= arg maxxi∈F2

∑
∼xi

∏
j

pYj |Xj
(yj , xj)1C(x) ,

(28)

where in the last step we have used assumption A1.
The last expression (28) is efficiently computable
using the factor graph message-passing approach
introduced in the following sections.

A.5. Factor graphs
The statement x ∈ C, or that x is a codeword,

can be rewritten as
m∏

i=1

1N (hi)(x) = 1, (29)

where hi denotes the ith row of H and N (hi) is
the nullspace defined by this row vector. Clearly
a codeword must be in the intersection of the
nullspaces corresponding to the rows of the parity-
check matrix.

In view of (29) it becomes clear why the graph
defined in Section 2 is called factor graph: It de-
scribes the correspondence between the factors and
arguments in (29). A factor node is connected to a
variable node if and only if the value of that factor
depends on the value of that variable.

An example factor graph corresponding to the
parity check matrix (25) is given in Figure 4. We

x1 x2 x3 x4 x5 x6 x7

1N (h1) 1N (h2) 1N (h3)

Figure 4: A factor graph.

will in the sequel interchangeably use the symbol of
the variable to denote the corresponding variable
node, as well as write hj or 1N (hj) for the corre-
sponding factor node.

A.6. Message-passing

When we try to explicitly compute the marginal-
izations

Si(xi) :=
∑
∼xi

∏
pYj |Xj

(yj , xj)1C(x) , (30)

in (28) for all i = 1, . . . , n, by employing the dis-
tributive law, it turns out that certain intermedi-
ate terms keep reappearing, which are of the same
shape as (30), but the sums are taken over fewer
terms and products contain fewer factors. An effi-
cient implementation would have to try to benefit
from this observation.

Example 3. Taking the parity-check matrix (25)
as an example, we might compute

S1(x1) =
∑
∼x1

∏
j

pYj |Xj
(yj , xj)1C(x)

=
∑
∼x1

∏
j

pYj |Xj
(yj , xj)

∏
k

1N (hk)(x)

= p1(x1)
∑
x2

p2(x2)

[∑
x4

p4(x4)1N (h1)(x1)

·

(∑
x3,x6

p3(x3)p6(x6)1N (h2)(x2)

)

·

(∑
x5,x7

p5(x5)p7(x7)1N (h3)(x3)

)]

where we abbreviated pi(xi) := pXi|Yi
(xi, yi), x1 =

(x1, x2, 0, x4, 0, 0, 0), x2 = (0, 0, x3, x4, 0, x6, 0), and
x3 = (0, 0, 0, x4, x5, 0, x7). Observe that 1C(x) =∏

j 1N (hj)(xj). Now, the expression for S2(x2) is
almost the same, namely

S2(x2) = p2(x2)
∑
x1

p1(x1)

[∑
x4

p4(x4)1N (h1)(x1)

·

(∑
x3,x6

p3(x3)p6(x6)1N (h2)(x2)

)

·

(∑
x5,x7

p5(x5)p7(x7)1N (h3)(x3)

)]
.

Clearly the sums over x5, x7 and x3, x6 would only
have to be computed once. Especially for very high
dimensional but sparse matrices H, this observation
leads to an efficient implementation to compute (or
in general approximate) the functions Si.

11

It turns out that if the factor graph defined by H is
a tree, then the functions Si can be computed iter-
atively, according to the following message-passing
rules.

Initially, each variable node xi sends the message
(that is, a function F2 → R) pi(·) to all adjacent
factor nodes. From now on we write µxi→hj for
the messages sent from variable node xi to factor
node hj and µhj→xi for the message in the opposite
direction.

Then the following two steps are iterated. First
update the factor-to-variable messages according to

µhj→xi
(xi) =

∑
xk: k 6=i

xk adjacent to hj

1N (hj)(xj)
∏
l 6=i:

xl adjacent to hj

µxl→hj (xl) .

(31)
Then update the variable-to-factor messages as

µxi→hj (xi) = pi(xi) ·
∏

hl adjacent to xi
l 6=j

µhl→xi(xi) . (32)

The intermediate marginalization after every itera-
tion is given by

S̃i(z) = pi(z) ·
∏

hl adjacent to xi

µhj→xi
(z) . (33)

Example 4. In Example 3, h2 would send

µh2→x4(x4) =
∑

x3,x6

p3(x3)p6(x6)1N (h2)(x2)

to x4, after receiving the initial messages

µx3→h2(z) = p3(z) and µx6→h2(z) = p6(z).

Then x4 sends

µx4→h1(x4) = p4(x4) · µh2→x4(x4) · µh3→x4(x4)

= p4(x4) ·
∑

x3,x6

p3(x3)p6(x6)1N (h2)(x2)

·
∑

x5,x7

p5(x5)p7(x7)1N (h3)(x3)

to h1. In the next iteration h1 in turn sends

µh1→x1(x1) =
∑
x2

p2(x2)

[∑
x4

p4(x4)1N (h1)(x1)

·

(∑
x3,x6

p3(x3)p6(x6)1N (h2)(x2)

)

·

(∑
x5,x7

p5(x5)p7(x7)1N (h3)(x3)

)]

to x1. At this stage we obtain S1 as

S1(x1) = S̃1(x1) = p1(x1) · µh1→x1(x1) .

Observe that from this point on the message-
updating rules do not alter the messages any more.
We might say that the algorithm has converged.

In general the factor graph is not a tree, and this
iterative procedure might not converge in the sense
that messages become constant after some itera-
tion. Nevertheless this algorithm is used very suc-
cessfully for decoding even in the presence of cycles
in the graph. A common stopping criterion is that
the intermediate marginalizations give a codeword,
which can be efficiently tested using the parity-
check matrix.

The update rules (31),(32) also appear in other,
more general, marginalization problems and gave
rise to the name sum-product algorithm, due to
the sum over products in (31). In the case of bi-
nary probability distributions the sum-product al-
gorithm is also commonly referred to as belief prop-
agation.

A.7. LLR reformulation yielding atanh-formula

Finally we show how one obtains the formulas
(2),(3) from the update rules (31),(32). The basic
idea is to represent each message µ, which —up to
scaling— is a probability distribution, by a single
number. This approach reduces the amount of stor-
age needed for each message, and, if one chooses the
representation carefully, also simplifies the message-
update rules. Each message can be though of as a
2-vector, µ = (µ(0), µ(1)), so we might define the
log-likelihood ratio (LLR) of µ as

lµ = log
µ(0)
µ(1)

. (34)

If we now rewrite the message updating rules
(31),(32) in terms of LLRs, we obtain from (32),

lµxi→hj
= log

µxi→hj (0)
µxi→hj

(1)

(32)
= log

[
p1(0)
pi(1)

·
∏

hl adjacent to xi
l 6=j

µhl→xi(0)
µhl→xi(1)

]

= lµxi→hj
+
∑

lµhl→xi
, (35)

which leads to the operator P in (5).
12

The derivation of

lµhj→xi
= 2atanh

∏
k 6=i:

xk adjacent to hj

tanh
lµxk→hj

2 (36)

from (31) is slightly more involved and details are
omitted due to space constraints. However, the
derivation can be found in [27, pp. 58f]. The
main ingredients are the following: Consider a fac-
tor node of degree J + 1. For xi = 0 in (31), the
sum ∑

xk: k 6=i

1N (hj)(xj) · some product

can be reduced to a summation over those xk, that
add up to 0 (in F2), and similarly for xi = 1. Then
the identity

I∏
i=1

(ri +1)+
I∏

i=1

(ri− 1) = 2
∑

x1,...,xI :
x1+...+xI=0

I∏
i=1

r(1−xi)

leads to

lµhj→xi
= log

1 +
∏

i
ri−1
ri+1

1−
∏

i
ri−1
ri+1

,

where ri = µhj→xi(0)/µhj→xi(1). Now using the
relations l = log r and r−1

r+1 = tanh l
2 , formula (36)

follows, leading to the operator S in the dynamical
system formulation (5). The input u in (5) is the
vector of log-likelihood ratios ui = log pYi|Xi

(yi,0)

pYi|Xi
(yi,1)

.
We see that instead of the computationally costly

sum of products in (31) and a product in (32),
the computational burden reduces essentially to one
product in (36) and one sum in (35), as in practice
the hyperbolic tangent and its inverse could be im-
plemented using lookup tables.

Instead of LLRs, other single-number represen-
tations of messages are possible, leading to further
equivalent formulations of the BP algorithm [6].

A.8. Turbo estimation: Non-constant inputs
Our last point is to argue why non-constant in-

puts to our system (5) are worthwhile to consider:
In Section A.3 we have assumed that the receiver

would know σ2. In practice that is not the case
and the receiver will have to make a guess σ̂2 for
σ2. This guessing is called channel estimation. To
make a good guess, the receiver might employ in-
formation obtained from the decoder after, say, a
few iterations, but possibly before a valid codeword

has been found. The receiver might then utilize
this additional knowledge in the estimation of the
channel parameter. Conversely, the updated knowl-
edge of the channel parameter changes the input to
the decoder. At this point the decoder could either
restart, or continue but with changed probabilities
pi, i.e., we have non-constant inputs. This proce-
dure is termed turbo-estimation (turbo as in turbo
charger in a car, where the exhaust warms up the
air fed into the engine), and ongoing research in-
dicates that it improves the decoding performance
even further.

13

