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Abstract— It is well known that input-to-state stability admits
an astonishing number of equivalent characterizations. Here
it is shown that for monotone systems on Rn

+ there are some
additional characterizations that are useful for network stability
analysis. These characterizations include system theoretic prop-
erties, algebraic properties, as well as the problem of finding
simultaneous bounds on solutions to a collection of inequalities.

I. INTRODUCTION

We consider Rn equipped with the standard partial order
given by the relations

x ≤ y ⇐⇒ xi ≤ yi for i = 1, . . . , n,

x < y ⇐⇒ x ≤ y and x 6= y,

x� y ⇐⇒ xi < yi for i = 1, . . . , n.

We also need the negations of these notions, i.e., x � y
if and only if there exists an index i such that xi > yi.
The other negations are defined in a similar manner. The
nonnegative orthant Rn+ is the set of all x ∈ Rn such that
x ≥ 0. Similarly, Rn×m+ denotes the set of matrices with
nonnegative entries.

Recall that a function f : Rn → Rm is monotone if x ≤ y
implies f(x) ≤ f(y). In the sequel let g : Rn+ × Rm+ → Rn+
be a continuous and monotone mapping with g(0, 0) = 0.

In recent years, especially in the context of stability
analysis of networks of dynamical systems by means of
small-gain theory and comparison principles [1–3, 5, 6, 8–
14, 16, 19–21, 23, 24, 26, 27], the following problems have
appeared frequently.

1) For a given w ∈ Rm+ find a bound on the maximal
solution s ∈ Rn+ of the vector inequality

s ≤ g(s, w). (1)

2) Find unbounded paths σ : R+ → Rn+ and ρ : R+ →
Rm+ with σ(0) = 0 and ρ(0) = 0 so that

g(σ(r), ρ(r))� σ(r) for all r > 0. (2)

3) Verify that for all s ∈ Rn+, s 6= 0,

g(s, 0) � s, (3)

or, equivalently, that for all s ∈ Rn+,

g(s, 0) ≥ s =⇒ s = 0. (4)
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4) Verify that the discrete-time system1

s+ ≤ g(s, w), (5)

respectively,
s+ = g(s, w) (6)

is input-to-state stable from w to s.

The important observation made in this paper is that the listed
conditions are, essentially, all equivalent in the sense that one
problem can be solved if any of the others can be solved.
The precise formulation of this statement will be given in
the next section, after some technical concepts have been
introduced.

Some of the relations 1)–4) may appear more familiar for
functions g of a very special form. To this end let A ∈
Rn×n+ , B ∈ Rn×m+ , and let g(s, w) := As + Bw. Then it
is clear that the stability of the time-discrete systems (5)
and (6) is intimately related to the condition that the spectral
radius ρ(A) is less than unity. This in turn allows to compute
s = (I − A)−1Bw, the unique maximal solution to (1).
Perhaps not so well known is that ρ(A) < 1 if and only
if (3) holds, see, e.g., [22]. Finally, the paths σ and ρ are
closely connected to an eigenvector of A via the celebrated
Perron-Frobenius Theorem, cf. [22].

For functions g of a special form, some of the above
conditions and their relations have been investigated in
previous works, in particular [16, 22, 23, 26].

It should be stressed that the equivalences here are strongly
based on the monotonicity of g and the resulting forward
invariance of Rn+ with respect to (6). In this regard our results
are not a mere extension of the impressive list of equivalent
characterizations of input-to-state stability given in [7] and
[15], as the equivalences in those works also hold without
the monotonicity requirement.

II. DEFINITIONS AND MAIN RESULTS

A function γ : R+ → R+ is of class K if it is continuous,
strictly increasing, and satisfies γ(0) = 0. It is said to be
of class K∞ if in addition it is unbounded. A function
λ : R+ → R+ is of class L if it is non-increasing and
satisfies lims→∞ λ(s) = 0. A function β : R2

+ → R+ is
of class KL if for every fixed s > 0, β(·, s) is of class
K and β(s, ·) is of class L. By | · | we denote the max-
norm and by φ(k, s, w(·)), k ≥ 0, the flow generated by
(6). Observe that by monotonicity of g we always have

1The notation s+ = f(s) is short-hand for s[k + 1] = f(s[k]).



φ(k, s, w(·)) ≤ φ(k, s, supl w(l)), so that in many cases
we can dispense with constant inputs. For constant inputs
w we will use the notation gkw(s) := φ(k, s, w). The vector
(1, . . . , 1)> will be denoted by e.

System (6) is input-to-state stable (ISS) from w to s,
c.f. [25], if there exist β ∈ KL and γ ∈ K such that for
all s ∈ Rn+, w ∈ Rm+ ,

|gkw(s)| ≤ β(|s|, k) + γ(|w|). (7)

A continuous function V : Rn+ → R+ is an ISS Lyapunov
function for system (6) if there exist α1, α2, α3 ∈ K∞ and
γ ∈ K such that for all s and w,

α1(|s|) ≤ V (s) ≤ α2(|s|) and (8)
V (s) ≥ γ(|w|) =⇒ V (g(s, w))− V (s) ≤ −α3(V (s)).

(9)

If it exists then without loss of generality the function V can
be assumed to be smooth, cf. [15].

System (6) has the asymptotic gain (AG) property (cf. [7])
if there exists a γ ∈ K such that for all s ∈ Rn+ and w ∈ Rm+ ,

lim sup
k→∞

|gkw(s)| ≤ γ(|w|). (10)

We will call a continuous monotone function ζ : Rn+ → Rm+
proper if there exists a function α̃ ∈ K∞ such that for all
s ∈ Rn+,

α̃(|s|)e ≤ ζ(s). (11)

Observe that a proper function ζ : Rn+ → Rm+ is positive
definite if and only if there exists an α̂ ∈ K∞ such that for
all s ∈ Rn+,

|ζ(s)| ≤ α̂(|s|). (12)

A continuous, monotone function g : Rn+ × Rm+ → Rn+ with
g(0, 0) = 0 is called eventually increasable if for all s ∈ Rn+
there exists a k ≥ 1 and w ∈ Rm+ such that

s ≤ gkw(s). (13)

Theorem 1: The following statements are equivalent:

ISS-LF: there exists a monotone ISS Lyapunov-function
for (6);

GAS: there exists a proper and positive definite map
ζ : Rn+ → Rm+ so that the origin is globally asymptotically
stable with respect to

s+ = f(s) := g(s, ζ(s)); (14)

ISS: system (6) is input-to-state stable;

AG: system (6) has the asymptotic gain property. 4
Theorem 2: The following statements are equivalent:

UOC: (Uniform order condition) there exists a proper and
positive definite map ζ : Rm+ → Rn+ such that

g(s, w) � s for all s � ζ(w); (15)

NP: (Neumann property) there exists a proper and positive
definite ζ : Rm+ → Rn+ such that for all s ∈ Rn+, w ∈ Rm+ ,

s ≤ g(s, w) =⇒ s ≤ ζ(w). 4

Theorem 3: The properties listed in Theorem 1 imply those
in Theorem 2. If g is eventually increasable, then the reverse
implication holds as well. 4

Theorem 4: The following property,

ΩP: there exist proper and positive definite σ : R+ → Rn+
and ρ : R+ → Rm+ such that

for all r > 0, g
(
σ(r), ρ(r)

)
� σ(r), (16)

implies every property listed in Theorems 1 and 2. Con-
versely, if g is eventually increasable, then every the proper-
ties listed in Theorems 1 and 2 implies ΩP. 4

The proof of the Theorems will be given in the appendix,
divided into multiple lemmas. In particular, the following
implications will be shown:

GAS

AG NP UOCISS

ISS-LF ΩP
L.1&2

shown in [15]

L.3
L.4

L.6
L.5

L.10

L.7

Observe that only in Lemmas 4 and 10 the map g is assumed
to be eventually increasable.

Example 1: Without the condition that g is eventually
increasable the implication NP to ΩP may not hold, as
the following example demonstrates. Let γ : R+ → R+,
f : R2

+ → R2
+, and g : R2

+ × Rm+ → R2
+ be given by

γ(r) :=
r2

1 + r
and g(s, w) := f(s) :=

(
γ(s1) + s2
γ(s2)

)
.

By considering separately the cases s1 = 0, s2 arbitrary and
s2 = 0, s1 arbitrary, we see that f(s) � s for all s > 0.
Note that g is not eventually increasable, since f does not
depend on w.

The origin is GAS for s+ = f(s), since the second
component of any trajectory decreases strictly to zero, so that
eventually fk(s) is dominated by a point in the region Ω =
{s ∈ R2

+ : f(s) � s} (it is sufficient to see that eventually
fk2 (s) < 1); monotonicity then implies fk(s) → 0 and also
stability of the origin, cf. Corollary 1 in the appendix. Hence
system (6) is ISS and, moreover, by Theorem 3 it satisfies
NP.

However, an unbounded path σ as in (16) cannot exist,
because f(s)� s implies s1 ≤ 1, see Figure 1. 5



Remark 1: The generalized small-gain condition, i.e., for
all s ∈ Rn+, s > 0,

Γµ(s) � s

where Γ = (γij) ∈ (K ∪ {0})n×n, µ : Rn →
Rn a monotone aggregation function, and Γµ(s)i =
µ
(
γi1(s1), . . . , γin(sn)

)
, cf. [4, 17, 22], which is frequently

seen in the context of network small-gain theorems, is of
course a special case of UOC (s � ζ(0) ⇐⇒ s > 0). 4

Remark 2: Property NP can equivalently be stated as fol-
lows: There exists a γ ∈ K∞ such that for all s ∈ Rn+,

w ∈ Rm+ , s ≤ g(s, w) =⇒ |s| ≤ γ(|w|). (17)

To see that (4) implies (17) we apply norms to (4) in order
to get

|s| ≤ |ζ(w)| ≤ |ζ(|w|e)| ≤ max
1≤i≤m

ζi(|w|e) =: γ(|w|),

and from there it is plain to see that γ ∈ K∞ because ζ is
proper and positive definite. For the other direction define
ζ(w) := γ(|w|)e. Then |s| ≤ γ(|w|) implies s ≤ |s|e ≤
γ(|w|)e = ζ(w). 4

Remark 3: A Lyapunov function for a monotone system of
the form

s+ = f(s), s ∈ Rn+,

can always be assumed to be itself a monotone function
V : Rn+ → R+. This follows from converse Lyapunov results
like the converse ISS Lyapunov result [15] or the converse
Lyapunov result [18] for autonomous systems. Indeed, con-
structions like [18] utilize Sontag’s Lemma on KL functions
to define a Lyapunov function V : Rn+ → R+ via

V (s) := sup
k≥0

α(|fk(s)|)ek

with a locally Lipschitz α ∈ K∞ satisfying α(|fk(s)|) ≤
α̂(|s|)e−2k for some α̂ ∈ K∞. From this definition it is
immediate that V must be monotone and continuous (even
locally Lipschitz) in s. In the literature on converse Lyapunov
theorems the candidate function V usually undergoes addi-
tional smoothing steps to obtain a continuously differentiable
Lyapunov function, which we do not need here. 4

a) Acknowledgement: The authors would like to ex-
press their gratitude to Fabian R. Wirth for numerous inspir-
ing discussions.
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Fig. 1. The region Ω = {s ∈ R2
+ : f(s)� s} in Example 1.
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gain theorems for large scale systems and construction of ISS
Lyapunov functions. SIAM J. Control Optim., 48(6):4089–
4118, 2010.

[5] S. Dashkovskiy, H. Ito, and F. R. Wirth. On a small gain
theorem for ISS networks in dissipative Lyapunov form. In
European Control Conf.2009, pages 1077–1082, Budapest,
Hungary, July 2009.

[6] S. Dashkovskiy and L. Naujok. ISDS small-gain theorem and
construction of ISDS Lyapunov functions for interconnected
systems. Systems Control Lett., 59(5):299–304, 2010.

[7] K. Gao and Y. Lin. On equivalent notions of input-to-state
stability for nonlinear discrete time systems. In Proc. of the
IASTED Int. Conf. on Control and Applications, pages 81–87,
2000.

[8] R. Geiselhart and F. R. Wirth. Numerical construction of
LISS Lyapunov functions under a small gain condition. Math.
Control Signals Syst., 24(1–2):3–32, 2011.

[9] R. H. Gielen and M. Lazar. Non-conservative dissipativity and
small-gain conditions for stability analysis of interconnected
systems. In Proc. 51st IEEE Conf. Decis. Control, pages
4187–4192, Maui, Hawaii, USA, 2012.

[10] H. Ito, S. Dashkovskiy, and F. Wirth. On a small gain theorem
for networks of iISS systems. In Proc. Joint 48th IEEE Conf.
Decis. Control and 28th Chinese Contr. Conf., pages 4210–
4215, 2009.

[11] H. Ito, Z.-P. Jiang, S. Dashkovskiy, and B. S. Rüffer. Robust
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[23] B. S. Rüffer. Small-gain conditions and the comparison
principle. IEEE Trans. Autom. Control, 55(7):1732–1736, July
2010.
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APPENDIX

Some of the properties in Theorems 1 and 2 use negations
of order relations. It is thus sometimes easier to work with the
negations of these properties in proofs, as we do in Lemmas 4
and 6. To this end we summarize the needed statements here.

¬AG: For all γ ∈ K∞ there exist s ∈ Rn+, w ∈ Rm+ such
that

lim sup
k→∞

|gkw(s)| > γ(|w|) . (18)

¬NP: For all proper and positive definite ζ : Rm+ → Rn+
there exist s ∈ Rn+, w ∈ Rm+ such that

s ≤ g(s, w) (19)

and
s � ζ(w) . (20)

Lemma 1: ISS-LF =⇒ GAS. 4
Proof. We start with an ISS Lyapunov function V : Rn+ →

R+ which satisfies

V (s) ≥ γ(|w|) =⇒ V (g(s, w))− V (s) ≤ −α(V (s)) (21)

for some γ ∈ K and α ∈ K∞. Define a proper and
positive definite map ζ : Rn+ → Rn+ by ζ(s) := γ−1(V (s))e
and consider (14). The choice of ζ ensures that the decay
condition in (21) is always satisfied, because

V (s) = γ(γ−1(V (s))) = γ(|γ−1(V (s))e|)
= γ(|ζ(s)|) = γ(|w|).

Hence, for (14) we have V (f(s)) < V (s) whenever s > 0.
We conclude by standard Lyapunov arguments that (14) is
GAS and the proof is complete. �

Lemma 2: GAS =⇒ ISS-LF. 4

Proof. Because (14) is globally asymptotically stable
there exists a continuous, proper, radially unbounded, and
monotone Lyapunov function V : Rn+ → R+, cf. Remark 3,
such that for some α, α ∈ K∞ we have

α(|s|) ≤ V (s) ≤ α(|s|) . (22)

The map ζ is proper and positive definite, hence there exists
α̃ ∈ K∞ such that (11) holds. Define γ := α ◦ α̃−1 ∈ K∞.
Now consider the case that V (s) ≥ γ(|w|). This implies

α(|s|) ≥ γ(|w|) = α(α̃−1(|w|))

and thus
α̃(|s|)e ≥ |w|e ≥ w.

Application of (11) yields

ζ(s) ≥ α̃(|s|)e ≥ w . (23)

By monotonicity of V and using (23) we get

V (g(s, w)) ≤ V (g(s, ζ(s))) < V (s),

proving that V (s) ≥ γ(|w|) implies V (g(s, w)) < V (s).
This shows the existence of an ISS-Lyapunov function for
system (6). �

Lemma 3: ISS ⇐⇒ AG. 4
Proof. That input-to-state stability implies the asymptotic

gain property is obvious. For the other direction consider the
AG property (10). Fix ε > 0. Then for any s0 ∈ Rn+ we can
find a T = T (s0, ε) ∈ N such that

sup
k≥T
|gkw(s0)| ≤ γ(|w|) + ε.

By monotonicity of the flow, respectively, g we obtain that
for all s ≤ s0,

sup
k≥T
|gkw(s)| ≤ sup

k≥T
|gkw(s0)| ≤ γ(|w|) + ε.

One can verify that this property thus coincides with the (in
general stronger) uniform asymptotic gain (UAG) property
(uniform in the sense that the supremum is attained uniformly
for initial conditions in compact sets and all inputs), cf. [7],
where it is shown that UAG implies ISS. �

Lemma 4: Let g be eventually increasable. Then NP =⇒
AG. 4

Proof. We will show ¬AG implies ¬NP. To this end let
ζ : Rm+ → Rn+ be proper and positive definite. Choose
γ ∈ K∞ such that

γ(r)e ≥ ζ(re) (24)

for all r ∈ R+. By ¬AG, see (18), there exist s∗ ∈ Rn+ and
w∗ ∈ Rm+ so that

lim sup
k→∞

|gkw∗(s∗)| > γ(|w∗|) . (25)

Define s := lim supk→∞ gkw∗(s∗).



First we assume that s is finite. Hence by (25) and using
monotonicity of g and the norm we have

|s| = | lim sup
k→∞

gkw∗(s∗)| ≥ lim sup
k→∞

|gkw∗(s∗)| > γ(|w∗|).
(26)

Similarly, we deduce

g(s, w∗) = g(lim sup
k→∞

gkw∗(s∗), w∗)

≥ lim sup
k→∞

gk+1
w∗ (s∗) = s,

(27)

which is (19), respectively, the first part of ¬NP. Because of
the max-norm, (26), and (24) there exists an index i with

si = |s| > γ(|w∗|) ≥ ζi(|w∗|e) ≥ ζi(w∗), (28)

which is equivalent to (20). Equation (27) together with (28)
is ¬NP.

Now assume that at least one of the components of s is
infinite. Thus

lim sup
k→∞

gkw∗(s) ≮∞ . (29)

Because g is eventually increasable, there exist k ≥ 1 and
w ≥ w∗ such that

s ≤ gkw(s) .

Applying gw on both sides repetitively yields, by monotonic-
ity of gw,

gnw(s) ≤ gn+kw (s) (30)

for all n ∈ N. Observe that by monotonicity (29) still holds
if w∗ is replaced by w and hence for all monotone, proper,
and positive definite ζ : Rm+ → Rn+ there exists a K ∈ N
such that

s# := sup
K≤l≤K+k−1

glw(s) � ζ(w),

establishing (19). Using monotonicity of g gives

g(s#, w) = g
(

sup
K≤l≤K+k−1

glw(s), w
)

≥ sup
K≤l≤K+k−1

gl+1
w (s)

= sup
{
gK+1
w (s), . . . , gK+k−1

w (s), gK+k
w (s)

}
≥ sup

{
gK+1
w (s), . . . , gK+k−1

w (s), gKw (s)
}

= s#,

where in the last inequality we have used (30) for n = K.
This establishes (20) and thus completes the proof. �

Lemma 5: NP ⇐⇒ UOC. 4
Proof. First note that UOC can be equivalently rephrased

as:

There exists a proper, monotone, and positive definite ζ :
Rm+ → Rn+ such that for all s ∈ Rn+, w ∈ Rm+ ,

s � ζ(s) =⇒ g(s, w) � s.

This implication can be easily be rewritten to obtain NP, and
thus the two properties are the same. �

Lemma 6: AG =⇒ NP. 4
Proof. We will show that ¬NP implies ¬AG. To this end

let γ ∈ K∞ and define ζ : Rm+ → Rn+ by ζ(w) := γ(|w|)e.
It is easy to see that ζ is proper and positive definite. By
¬NP for this choice of γ and ζ there exist s ∈ Rn+, w ∈
Rm+ satisfying (19) and (20). With the monotonicity of g it
follows from (19) that

s ≤ g(s, w) ≤ · · · ≤ gkw(s)

for all k ∈ N. And thus by taking norms

|s| ≤ lim sup
k→∞

|gkw(s)|. (31)

Due to (20) there exists an index i such that ζi(w) < si.
Combining the latter with (31) results in

γ(|w|) = ζi(w) < si ≤ |s| ≤ lim sup
k→∞

|gkw(s)|

where the first equation is by definition of ζ. This establishes
¬AG, cf. (18). �

Lemma 7: ΩP =⇒ ISS-LF. 4
Proof. Let V (s) := maxi σ

−1
i (si) and γ(r) :=

maxi ρ
−1
i (r), a class K∞ function.

Clearly, V is monotone and satisfies

V (s) ≤ max
i
σ−1i (|s|) =: α2(|s|)

and, since σ
(
V (s)

)
≥ s, we also have(

max
i
σi
)(
V (s)

)
=
∣∣σ(V (s)

)∣∣ ≥ |s|,
which implies V (s) ≥ α1(|s|) for α1 =

(
maxi σi

)−1 ∈
K∞. These inequalities establish (8).

Now consider s ∈ Rn+, w ∈ Rm+ , with s > 0 and assume
that V (s) ≥ γ(|w|). It follows that V (s) ≥ maxi ρ

−1
i (|w|) ≥

maxi ρ
−1
i (wi), or equivalently, that ρ

(
V (s)

)
≥ w. Conse-

quently, due to (16), we have

V (s) = V
(
σ(V (s))

)
> V

(
g
(
σ(V (s), ρ(V (s))

))
≥ V

(
g(s, w)

)
.

This proves that V is an ISS Lyapunov function for sys-
tem (6) with gain γ. � Before showing that ΩP can be
inferred from the other properties listed in Theorems 1 and
2, we turn to a few auxiliary results. By a (parametrized)
path in Rn+ we mean a continuous function from a possibly
unbounded interval into Rn+. Interchangeably, we sometimes
refer to the image of such a function as a path.

Lemma 8: Let f : Rn+ → Rn+ be continuous, monotone,
satisfy f(0) = 0, and let the origin be globally attractive
with respect to

s+ = f(s). (32)

Then the following assertions hold:

1) For all s > 0, f(s) � s or, equivalently, f(s) ≥ s
implies s = 0.



2) The set

Ω = Ω(f) := {s ∈ Rn+ : f(s)� s}

is radially unbounded in the sense that for all r > 0
there is an s ∈ Ω such that |s| = r. The set Ω enjoys
the following properties:

a) If s ∈ Ω and λ ∈ [0, 1) then λf(s)+(1−λ)s ∈ Ω.
b) If u ∈ Ω and s ∈ Rn+ is such that f(u)� s� u

then for all λ ∈ [0, 1], λs+ (1− λ)u ∈ Ω.
c) Ω is open in Rn+.

3) The set

Ψ = Ψ(f) := {s ∈ Rn+ : f(s) ≤ s}

is the topological closure of Ω in Rn+. The set Ψ
is forward invariant under (32). Every point in Ψ is
connected by a path in Ψ to the origin. The set

Ψ∞ :=
⋂
k≥0

f−1[Ψ]

= {s ∈ Ψ: for every k ≥ 0 there is a

u ∈ Ψ such that fk(u) = s}

is a radially unbounded subset of Ψ in the sense that
for all r > 0 there is an s ∈ Ψ∞ such that |s| = r. In
particular, there exists a path σ : R+ → Rn+ such that

σ(0) = 0, σ(r) ∈ Ψ∞, for all r ≥ 0, (33)

for every i the function σi is non-decreasing, and for
at least one i it is unbounded. 4

Proof.

1) Assume the opposite, i.e., that there is an s > 0 so that
f(s) ≥ s. By monotonicity we then have fk+1(s) ≥
fk(s) ≥ . . . ≥ s > 0 for all k ≥ 0, in contradiction to
fk(s) → 0 as k → ∞ since the origin is assumed to
be attractive. Hence, no such s > 0 can exist, proving
that indeed f(s) � s for all s > 0.

2) Given that f(s) � s whenever s > 0, the first claim
is proven in [22, Theorem 3.3]. Properties (a)–(c) are
a consequence of the defining inequality for Ω and
monotonicity. Their verification is left to the reader.

3) Clearly, Ψ is the closure of Ω. As a consequence, Ψ
is forward invariant under (32) and it enjoys the same
interpolation properties (a)–(c) as Ω.
Every point in s ∈ Ψ defines a trajectory of points
tending to the origin. By application of (a), the linear
interpolation of these points together with the origin
yields a path connecting the point s to the origin.
Now fix r > 0 and consider the set Ψ∞ intersected
with the set

Sr := {s ∈ Rn+ : ‖s‖1 = r},

the sphere with respect to the 1-norm restricted to
Rn+. The set Sr is compact, and so is AK := Sr ∩⋂K
k=0 f

−k[Ψ] for every K ≥ 0. Due to the path-
connectedness of Ψ, the sets AK are all non-empty and

form a descending sequence, i.e., AK+1 ⊆ AK for all
K ≥ 0. By a version of Cantor’s Intersection Theorem
the infinite intersection Ψ∞ ∩Sr =

⋂∞
K=0AK is non-

empty. Trivially, we have 0 ∈ Ψ∞. Since r > 0 was
arbitrary, the first statement about Ψ∞ is proven.
It is left to construct the path σ. Fix an r > 0 from
the previous step and take an s0 ∈ Ψ∞ ∩ Sr. By the
definition of Ψ∞, there exists an entire trajectory of
(32), φ : Z → Ψ∞ with φ(0) = s0, |φ(k)| → ∞ for
k → −∞, and φ(k)→ 0 for k →∞. We write sk :=
φ(k), k ∈ Z.
Linear interpolation of these points combined with the
origin yields a path σ̃ : R→ Ψ∞ with σ̃(0) = s0 and
the same limit behavior as φ, per

σ̃(r) := (1− λ)sk + λsk+1

where k(r) := brc, λ(r) := r − brc, and brc denotes
the largest integer less or equal to r. Then we obtain
σ from σ̃ via a time reversal like

σ(r) :=

{
0 for r = 0,

σ̃(− log r) for r > 0,

so that we have σ(0) = 0 and |σ(r)| → ∞ as r →∞.
The monotonicity properties for σ̃ and σ follow from
the monotonicity of the trajectory φ. This completes
the proof. �

The last item of the lemma has a noteworthy consequence:

Corollary 1: If the origin is attractive for s+ = f(s), where
f : Rn+ → Rn+ is continuous and monotone, then it is also
stable. 4

Proof. Just note that small points in the neighborhood
of the origin can be dominated by a point ω ∈ Ω in Ω. The
ordering of solutions principle then dictates that no trajectory
can escape the bound ω. �

Lemma 9: Consider f as in Lemma 8 and assume that in
addition f is proper. Then Ψ∞ is jointly unbounded in the
sense that for every u ∈ Rn+ there is an s ∈ Ψ∞ satisfying
s ≥ u. The path σ can be chosen to be unbounded in every
component. In addition, there exists a path σ : R+ → Rn+
such that σ(0) = 0, σ(r) ∈ Ω for all r > 0, and for all i
the functions σi are of class K∞. In particular, the set Ω is
jointly unbounded, too. 4

Proof. Since f is proper, there exists an α ∈ K∞ such that
α(|s|)e ≤ f(s) for all s > 0. Consider the path σ : R+ →
Ψ∞ given by Lemma 8. The function r 7→ |σ(r)| is
unbounded, so with increasing r > 0 also σ(r) ≥ f(σ(r)) ≥
α(|σ(r)|)e increases in every component beyond any finite
bound. This establishes that every individual component of
σ is unbounded and hence that Ψ is jointly unbounded. By
a perturbation argument, the path σ can be modified into
a path σ with the same unboundedness properties, so that
each component function is strictly increasing, i.e. of class
K∞. By the same perturbation argument, we obtain that



f
(
σ(r)

)
� σ(r) for r > 0. This establishes the desired

properties for Ω. �

Lemma 10: Let g be eventually increasable. Then GAS
implies ΩP. 4

Proof. Let f(s) = g
(
s, ζ(s)

)
and ζ : Rn+ → Rm+ be given

by (14) and observe that f is proper. According to Lemma 9,
there is a path σ : R+ → Rn+ such that f

(
σ(r)

)
� σ(r) for

all r > 0. Define ρ := ζ◦σ, which, by construction, is proper
and positive definite, as is σ. We obtain that for all r > 0,

g
(
σ(r), ρ(r)

)
= f(σ(r))� σ(r).

This establishes ΩP. �

Finally, we aggregate the lemmas to prove the theorems.

A. Proof of Theorem 1

By Lemma 1, the existence of an ISS Lyapunov function
implies GAS. By Lemma 2 the converse also holds. It was
shown in [15] that for discrete-time systems input-to-state
stability and the existence of an ISS Lyapunov function are
equivalent. In fact, the Lyapunov function only needs to be

continuous to imply ISS, and if there exists a continuous
Lyapunov function, there also exists a smooth one. The
equivalence of ISS and AG is shown in Lemma 3. �

B. Proof of Theorem 2

Refer to Lemma 5. �

C. Proof of Theorem 3

It suffices to consider only the two properties AG and
NP. That AG implies NP is shown in Lemma 6. Under the
additional assumption that g is eventually increasable, the
converse implication is shown in Lemma 4. �

D. Proof of Theorem 4

Again it suffices to compare ΩP with any of the other
properties listed in Theorems 1 and 2.

Lemma 7 establishes that ΩP is sufficient for ISS-LF.
Lemma 10 shows that GAS implies ΩP when g is eventually
increasable. �
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