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Comments on “A multichannel IOS Small Gain

Theorem for Systems With Multiple

Time-Varying Communication Delays”

Björn S. Rüffer, Member, IEEE, Rudolf Sailer, and Fabian R. Wirth

Abstract

The small-gain condition presented by Polushin et al. may be replaced by a strictly weaker one

to obtain essentially the same result. The necessary minor modifications of the proof are given. Using

essentially the same arguments, a global version of the result is also presented.

Index Terms

Networked control systems, generalized small-gain condition, Lyapunov stability, time-varying

communication delays, input-to-output stability

I. INTRODUCTION

In [1] Polushin et al. have presented a small-gain type condition that ensures input-output

stability for networked systems in the presence of time delays. In this note we show that the

small-gain condition by Polushin et al. can be replaced by a less restrictive one. As an extension

we obtain a global version of the result, with a global small-gain condition resembling that

one of Dashkovskiy et al. [2]. By means of an example we show that the modified small-gain
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conditions are indeed less restrictive than the original one. For brevity we adopt the problem

formulation and notations from [1].

II. THE GENERALIZED SMALL-GAIN THEOREM

Based on the setup and notation in [1] we formulate our generalized small-gain condition in

a very compact form, thereby using [1].X to reference equation/assumption/ or result X in [1].

A. Modified notation

We need a few notations before we can state our main theorem. We write

ΓU =

Γ1u 0

0 Γ2u

 , ΓW =

Γ1w 0

0 Γ2w

 ,

B(x+
d (t)) =

β1(|x1d(t)|)

β2(|x2d(t)|)

 , ŷ+ =

ŷ+
1

ŷ+
2

 ,

δ =

δ1
δ2

 , Ψ =

 0 Ψ2

Ψ1 0

 ,

u+(t) =

u+
1 (t)

u+
2 (t)

 , ∆u =

∆u1

∆u2

 .



(1)

Rewriting inequality [1].(3) and [1].(4) with this notation yields

sup
t≥t0

y+ ≤ max
{
B(x+

d (t0)), sup
t≥t0

ΓU(u+
d ), sup

t≥t0
ΓW (w+

d ), δ
}

(2)

and, respectively,

lim sup
t→∞

y+ ≤
{

lim sup
t→∞

ΓU(u+
d ), lim sup

t→∞
ΓW (w+

d ), δ
}
. (3)

The interconnection of both subsystem can be described as

u+(t) ≡ 0 ∀t < T0 (4)

and

u+(t) ≤ Ψ(ŷ+(t)) ∀t ≥ T0. (5)

To formulate subsequent statements in a precise way, it is useful to introduce the concept of

monotone operators:
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Definition 2.1: A mapping T : domT ⊂ Rn+ → Rn+ is called a continuous and monotone

operator on domT , if 1. T is continuous and 2. for all u, v ∈ domT , u ≤ v implies T (u) ≤ T (v).

•

A matrix Γ = (γij) ∈ Gn×n defines a continuous and monotone operator Γ : Rn+ → Rn+ by

Γ(s) =
(

max
j
γ1j(sj), . . . ,max

j
γnj(sj)

)T
, for s ∈ Rn+.

The class of these matrix-induced operators has some nice properties, some of which are given

in the appendix. Most relevant is the fact that any finite composition of matrix-induced operators

gives again a matrix-induced operator and that matrix-induced operators commute with the max-

operation (for vectors, defined element-wise).

We write Γ � id, to denote that Γ(s) � s for all s ∈ Rn+, s 6= 0, i.e., that for every such s

there exists an i such that Γ(s)i < si.

Now formally define

Γ = ΓU ◦Ψ and G = max
k≥0

Γk .

While Γ clearly is a matrix-induced continuous and monotone operator, G is not necessarily

well-defined. We will see subsequently that a small-gain type condition is precisely what is

needed to assure that G is well-defined on a subset of domG ⊂ Rn+. In this case, G can be

represented as a matrix-induced monotone and continuous operator on domG.

B. Main results

Now we provide two generalized versions of the result in [1], with the original small-gain

condition replaced by a more general condition. The first result is of a local nature, resembling

the original result in [1], the second one is a corresponding global version.

To avoid confusion, we denote the vectors appearing in the small-gain condition by δSGC,∆SGC,

whereas in [1] they have been denoted by δ,∆. Unfortunately, δ has also the meaning of an

offset in the definition of IOS. Our subscript notation aims to avoid this clash, here δ without

subscript refers to the IOS offset given in (1).

Theorem 2.2: Suppose the systems [1].(2)–[1].(7) satisfy Assumptions [1].1 and [1].2 and

that there exist δSGC,∆SGC ∈ Rp+q+ , 0 ≤ δSGC < ∆SGC, such that the following local small-gain

condition holds:

Γ(∆SGC) ≤ ∆SGC and lim sup
k→∞

Γk(∆SGC) ≤ δSGC . (6)
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Then the following assertions hold: If

Ψ(∆∗∗) ≤ ∆u (7)

then G is well-defined on the order interval [δSGC,∆SGC]. If in addition ∆SGC > ∆∗∗, where

∆∗∗ = G (max{B(∆x),ΓW (∆w), δ}) , (8)

then system [1].(2)–[1].(7) is IOS at t = T0 in the sense of Definition [1].1 with

td(T0) = t1d(T0) + t2d(T0) + τ ∗(T0)

+ τ ∗(T0 − τ ∗(T0)) .
(9)

More precisely, the conditions x+
d (T0) ≤ ∆x , supt≥T0

w+
d ≤ ∆w imply that the following

inequalities hold
sup
t≥T0

y+ ≤ max
{
G
(

max
{
B(x+

d (T0)),

ΓW (sup
t≥T0

w+
d ), δ

})
, δSGC

}
,

(10)

and
lim sup
t→∞

y+
d ≤ max

{
G
(

max
{

Γw(lim sup
t→∞

w+
d ),

δ
})
, δSGC

}
. •

(11)

The proof is essentially the same as the corresponding version in [1], with the important

difference that all applications of the original small-gain condition [1].(12) be replaced by an

application of Lemma A.5.

For the special case that ∆SGC = ∞ and δSGC = 0 and by utilizing Lemma A.3, we have

a corresponding global version. This version is applicable in case that the IOS restrictions

∆ui,∆wi,∆xi, i = 1, 2, of the subsystems are infinite. Notable is the similarity of the small-gain

condition to the one given in [2]:

Remark 2.3 (A note on the local small-gain condition (6)): Condition (6) implies

Γ(s) � s for all s ∈ [δSGC,∆SGC], s 6= δSGC .

The argument is similar to the proof of Lemma A.3. Notably, the converse does not hold locally,

but it does globally, as is emphasized by the following global extension of the main result. •

Corollary 2.4: Suppose the systems [1].(2)–[1].(7) satisfy Assumptions [1].1 and [1].2 with

infinite restrictions ∆ui,∆wi,∆xi, i = 1, 2, and that one of the following equivalent conditions

holds:
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1) Γ satisfies the small-gain condition Γ � id;

2) Γk(s)→ 0 as k →∞ for all s ≥ 0;

3) all minimal cycles (and hence all cycles) in Γ are contractions (see Lemma A.3 for the

meaning of this condition).

Then system [1].(2)–[1].(7) is IOS at t = T0 in the sense of Definition [1].1 with infinite

restrictions and

td(T0) = t1d(T0) + t2d(T0) + τ ∗(T0) + τ ∗(T0 − τ ∗(T0)) .

More precisely, boundedness of x+
d (T0), supt≥T0

w+
d implies that the following inequalities hold

sup
t≥T0

y+ ≤ G
(

max
{
B(x+

d (T0)),ΓW (sup
t≥T0

w+
d ), δ

})
,

lim sup
t→∞

y+
d ≤ G

(
max

{
Γw(lim sup

t→∞
w+
d ), δ

})
. •

Remark 2.5: Note that [1].(17) can be interpreted as G ◦ B and G ◦ ΓW . Indeed, condition

[1].(12) guarantees that the maximum in (10) respectively (11) is already attained when restricting

to k ≤ 2 (recall that G = maxk≥0 Γk). Unsuprisingly, in the more general case the obtained

estimates are more restrictive. •

The next lemma relates our new small-gain condition, which can essentially be formulated as

Γ(s) � s ∀s 6= 0, (12)

to the old one, [1].(12): Since Γ < id in particular implies Γ � id, but not vice versa, we see

that condition (12) is indeed weaker than [1].(12).

Lemma 2.6: Given Γ12 ∈ Gp×q and Γ21 ∈ Gq×p, denote Γ =

 0 Γ12

Γ21 0

. Then Γ � id if

and only if Γ12 ◦ Γ21 � id if and only if Γ21 ◦ Γ12 � id. •

Proof: First assume that Γ � id holds. By [3, Lemma 2.1] for all k ≥ 1, Γk � id.

In particular for k = 2 we have

Γ12 ◦ Γ21(s1)

Γ21 ◦ Γ12(s2)

 � id. By considering the special cases

s = (sT1 , 0)T and s = (0, sT2 )T separately, we conclude Γ12 ◦ Γ21 � id and Γ21 ◦ Γ12 � id.

Now suppose Γ12 ◦ Γ21 � id and assume there exists s = (sT1 , s
T
2 )T with s1 6= 0, such

that Γ(s) ≥ s. By monotonicity Γ2(s) ≥ Γ(s) ≥ s. At the same time we have Γ2(s) =Γ12 ◦ Γ21(s1)

Γ21 ◦ Γ12(s2)

, implying Γ2(s) � s because of Γ12 ◦ Γ21 � id, a contradiction. The other

cases follow by essentially the same argument.
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Note that (12) essentially says that Γ has to be a contraction. This is also implied by requiring

Γ(s) < s, ∀s 6= 0, as in [1], but this requisite is much stronger.

0
0

∆

δ

∆SGC

δSGC

Γ � id

Γ < id

s1

s 2

Fig. 1. Differences between the two small-gain conditions: The bubble-shaped (blue) region is where Γ(s) < s holds. The

condition in [1] requires a rectangular set contained in this region, and the corresponding order interval (δ,∆) is denoted as the

the small red box. In contrast, condition (6) may essentially include the entire bubble-shaped region, giving a less conservative

estimate as the order interval [δSGC,∆SGC], indicated as the large green box.

The following example shows a case where the condition of Polushin et al. is not applicable,

but a weaker small-gain condition proposed in this note instead is:

Example 2.7: Consider two systems of FDE’s as in [1] and let Assumption 1 of [1] hold. In

particular, let the gains be

Γ1u =

γ13 0

0 γ24

 , Γ2u =

 0 γ32

γ41 0

 ,

γ13 = γ24 = γ32 = id , γ41 =
1

2
id .

A small calculation shows

Γ1u ◦ Γ2u

s1

s2

 =

γ32 ◦ γ24(s2)

γ41 ◦ γ13(s1)

 =

 s2

1
2
s1

 ≮
s1

s2


for, e.g., s1 = s2. Therefore the condition from [1, Theorem 1],

Γ1u ◦Ψ2 ◦ Γ2u ◦Ψ1(s) < s ∀s ∈ (δ#,∆#) ⊂ R2
+
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with Ψ1 = Ψ2 = id is not satisfied. On the other hand, if we use notation (1) the gain matrix of

this particular example is

Γ = ΓU ◦Ψ =

Γ1u 0

0 Γ2u

 ◦
 0 id

id 0



=


0 0 γ13 0

0 0 0 γ24

0 γ32 0 0

γ41 0 0 0

 .

This matrix has only one simple cycle:

γ13 ◦ γ32 ◦ γ24 ◦ γ41 =
1

2
id < id =⇒ Γ(s) � s ∀s 6= 0 ,

where the last implication follows from Lemma A.3. •
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APPENDIX

A. Technical lemmata

It might be useful to point out for applications, that the set of gain matrices as employed in

this paper has some nice algebraic properties. We list a few, the proofs are not very involved

and are omitted for brevity.

Lemma A.1 (Closedness under composition): Given Γ1 ∈ Gl×m and Γ2 ∈ Gm×n, then there

exits Γ ∈ Gl×n satisfying Γ = Γ1 ◦ Γ2 as operator Rn+ → Rl+. •

Hence, by using induction, it is at hand that any finite composition yields again a matrix-induced

operator.

Lemma A.2 (Distributive-law w.r.t. maximization): Given Γ ∈ Gn×m, and a, b ∈ Rm+ , then

Γ
(

max{a, b}
)

= max
{

Γ(a),Γ(b)
}

. •
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The following lemmata are at the heart of the proof of the small-gain theorem.

Lemma A.3: Let Γ be of class Gn×n. The following are equivalent.

1) Γ(s) � s ∀s ∈ Rn+, s 6= 0;

2) limk→∞ Γk(s) = 0 ∀s ∈ Rn+;

3) All cycles in Γ are contractions, i.e.,

γi1i2 ◦ γi2i3 ◦ · · · ◦ γiki1 < id

for all (i1, . . . , ik) ∈ {1, . . . , n}k ∀k ≥ 1. •

See [3, Theorem 6.4] for a proof. A minimal cycle is a cycle that does not contain any shorter

cycles. It is not difficult to see that 3) can be replaced by

3′) all minimal cycles in Γ are contractions.

Lemma A.4: Let Γ ∈ Gn×n satisfy the small-gain condition Γ � id, then for a, b ∈ Rn+,

a ≤ max
{
b,Γ(a)

}
(13)

implies

a ≤ max
k≥0

Γk(b) ∈ Rn+ . • (14)

Proof: We identify Γ0(b) = b. By Lemma A.3 we have Γk(b) → 0 for k → ∞, so the set

{Γk(b)} must be bounded and have a least upper bound in Rn+. Inequality (14) now follows by

recursively substituting (13) into itself and by noting that Γ
(

max{a, b}
)

= max
{

Γ(a),Γ(b)
}

.

A local version of the previous result is the following, stated for monotone and continuous

operators:

Lemma A.5: Let T : Rn+ → Rn+ be continuous and monotone and assume there exist δSGC,∆SGC ∈

Rn+, δSGC < ∆SGC, such that

T (∆SGC) ≤ ∆SGC and lim sup
k→∞

T k(∆SGC) ≤ δSGC .

Then for all a, b ≤ ∆SGC ,

a ≤ max{b, T (a)} =⇒ a ≤ max
k≥0
{T k(b), δSGC} . •

The proof is similar to the previous one.
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B. Proofs of the main results

Proof of Theorem 2.2: The proof that G is well-defined on [δSGC,∆SGC] follows by a similar

argument as in the proof of Lemma A.4. Now consider system [1].(2)-[1].(7) and suppose

x+
d (T0) ≤ ∆x and sup

t∈[T0,∞)

w+
d ≤ ∆w. (15)

Assumption [1].1 together with (4), (15) as well as causality arguments imply that

y+
d (T0) ≤ max{B(∆x),ΓW (∆w), δ}.

With the help of (4), (5) and Assumption [1].2.i we can deduce

sup
t∈[T0−td(T0),T0+τ∗]

u+ ≤ Ψ(max{B(∆x),ΓW (∆w), δ})

≤ Ψ(∆∗∗),

where the last inequality follows from (8). From the last inequality together with (7) we see

that the restrictions on the inputs are satisfied for t ∈ [T0 − td(T0), T0 + τ∗]. Hence there exists

Tmax > T0 + τ∗ such that the solutions of [1].(2)-[1].(7) are well-defined for all t ∈ [T0, Tmax).

Now we want to show that

sup
t∈[T0,Tmax)

y+
d ≤ ∆∗∗. (16)

We will prove (16) by contradiction. So assume there exists T1 ∈ [T0, Tmax − τ∗) such that

sup
t∈[T0,T1]

y+
d ≤ ∆∗∗ and sup

t∈[T0,T1+τ∗]

y+
d � ∆∗∗. (17)

Combining (2), (9), (15) with (5) and Assumption [1].2.i, we obtain

sup
t∈[T0,T1+τ∗]

y+
d ≤ max

{
B(∆x),ΓW (∆w),

Γ( sup
t∈[T0,T1]

y+
d ), δ

}
.

From the definition of (8) it is easy to see that Γ(∆∗∗) ≤ ∆∗∗. Hence we can deduce with the

help of the first inequality in (17)

sup
t∈[T0,T1+τ∗]

y+
d ≤ max{B(∆x),ΓW (∆w),∆∗∗} = ∆∗∗,
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which contradicts the second inequality in (17). This contradiction proves (16). Next we want

to show that Tmax =∞. Again we will prove this by contradiction. Due to the IOS assumption

on the subsystems Tmax <∞ implies

sup
t∈[T0,Tmax)

u+ � ∆u. (18)

From (5) and (7) we can see that (18) implies

Ψ( sup
t∈[T0,Tmax)

ŷ+) � Ψ(∆∗∗).

Because of the monotonicity of Ψ and the fact that sup ŷ+ ≤ sup y+
d we get

sup
t∈[T0,Tmax)

y+
d � ∆∗∗,

which contradicts (16), hence Tmax =∞.

Summarizing, the restrictions on the inputs hold for all t ∈ [T0,∞). Hence we can use (2) to

get

sup
t≥T0

y+
d ≤ max{B(x+

d (T0)),ΓW (sup
t≥T0

w+
d ),Γ(sup

t≥T0

y+
d ), δ}.

Using Lemma A.5 we conclude

sup
t≥T0

y+
d ≤ max

{
max
k≥0

Γk(max{B(x+
d (T0),

ΓW (sup
t≥T0

w+
d )), δ}), δSGC

}
,

which can be easily rewritten to get (10). Similarly we can use (3) together with Lemma A.5

to get

lim sup
t→∞

y+
d ≤

max
{

max
k≥0

Γk
(

max{ΓW (lim sup
t→∞

w+
d (t)), δ}

)
, δSGC

}
.

Realizing that this can be brought into the form (11) finishes the proof.

Proof of Corollary 2.4: The proof is again essentially the same. Instead of Lemma A.5

now Lemma A.4 serves as the main technical tool. Instead of ∆w this time we have to use

supt∈[T0,∞)w
+
d (t), which we assumed to be finite. Instead of ∆x we use x+

d (T0), which is also

finite. Previously, we had a constant ∆∗∗ independent of the particular choice of input, here we

define ∆∗∗w by

∆∗∗w = G
(

max
{
B
(
x+
d (T0)

)
,ΓW

(
sup

t∈[T0,∞)

w+
d (t)

)
, δ
})

,
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which depends on the choice of input w. Using essentially the same steps as in the previous proof,

thereby replacing ∆∗∗ by ∆∗∗w , we obtain from the equivalent of (16)–(17) using Lemma A.4,

sup
t∈[T0,T1+τ∗]

y+
d ≤ max

{
B(x+

d (T0)),ΓW ( sup
t∈[T0,∞)

w+
d (t)),

Γ( sup
t∈[T0,T1]

y+
d ), δ

}
≤ ∆∗∗w .

This inequality implies Tmax = ∞. From here we obtain the desired estimates as in the proof

of the theorem.


