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Abstract

Two similar stability notions are considered; one is the long established notion
of convergent systems, the other is the younger notion of incremental stability.
Both notions require that any two solutions of a system converge to each other.
Yet these stability concepts are different, in the sense that none implies the
other, as is shown in this paper using two examples. It is shown under what
additional assumptions one property indeed implies the other. Furthermore,
this paper contains necessary and sufficient characterizations of both properties
in terms of Lyapunov functions.
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1. Introduction

In this paper we study and compare two long established and related stability
notions, namely those of incremental stability [24, 10, 2, 26] and convergence [7,
23, 13]. These stability notions have received an increased interest in recent years
due to their potential application in synchronisation [17, 5, 21], nonlinear output
regulation [15], steady-state analysis of nonlinear systems [12] and many other
nonlinear control problems. We refrain from giving a further and exhaustive
overview on these, and related, stability notions; rather, we study and compare
in detail the notions of incremental stability as defined in [2] and convergent
systems as defined in [13]. The reason for this study is that, although these
stability notions appear to be similar, they are in fact different. On the one
hand, we will make explicit these differences and, on the other hand, we will
present conditions under which one stability property implies the other.

˚Corresponding author
Email addresses: bjoern@rueffer.info (Björn S. Rüffer), N.v.d.Wouw@tue.nl (Nathan
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Let us introduce the definitions of convergence and incremental stability.
Consider hereto a system

9xptq “ fpt, xq (1)

with f : Rn`1 Ñ Rn measurable in t and locally Lipschitz in x P Rn, uniformly
for t in compact sets (this assumption guarantees uniqueness and local existence
of solutions, cf. [18]). We say that a set A Ă Rn is positively invariant under
(1) if x0 P A implies that for all t0 P R, xpt, t0, x0q P A for all t ě t0.

Let X Ă Rn be a subset of Rn. We are interested in two stability concepts,
defined as follows.

Definition 1 (cf. [15, 13]). System (1) is uniformly convergent in a positively
invariant set X if

1. all solutions xpt, t0, x0q exist for all t ě t0 for all initial conditions pt0, x0q P
Rˆ X ;

2. there exists a unique solution xptq in X defined and bounded for all t P R;

3. the solution xptq is uniformly1 asymptotically stable in X , i.e., there exists
a function β P KL such that for all pt0, x0q P Rˆ X and t ě t0,

}xpt, t0, x0q ´ xptq} ď β
`}x0 ´ xpt0q}, t´ t0˘.

System (1) is globally uniformly convergent if it is uniformly convergent in Rn.

For a uniformly convergent system, the unique, bounded uniformly asymp-
totically stable solution xptq is called a steady-state solution.

Definition 2 (cf. [2]). System (1) is incrementally asymptotically stable (IS
for short) in a positively invariant set X Ă Rn if there exists a function β P KL
such that for any ξ1, ξ2 P X and t ě t0,

}xpt, t0, ξ1q ´ xpt, t0, ξ2q} ď βp}ξ1 ´ ξ2}, t´ t0q . (2)

In the case X “ Rn we say that system (1) is globally incrementally stable
(GIS), or just incrementally stable.

The definitions given here are for seemingly very general time-varying sys-
tems. Still, implicit to both definitions is that solutions to (1) with initial
conditions in X exist for all forward times. Also note that in contrast to the
definition given here, most existing notions of incremental stability, e.g. [2],
are defined only for systems with right-hand sides not explicitly depending on
time. Furthermore, item 1 in Definition 1 is actually redundant, since in this
paper we define convergence with respect to a positively invariant set. However,
historically convergence would be defined using item 1 instead of the positively
invariant set.

As argued above the properties of incremental stability and convergence are
very useful in tackling a range of nonlinear control problems. Moreover, since

1In Definition 1 the uniqueness of the solution xptq is in fact a consequence of its uniform
asymptotic stability, cf. [15, p.15, Property 2.15].
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the definition of uniform convergence implies the existence of a unique bounded
(uniformly globally asymptotically stable) solution, termed the steady-state so-
lution, the convergence property is a powerful tool for steady-state (perfor-
mance) analysis of nonlinear (control) systems. We note that the existence
of such a well-defined steady-state solution is not implied by the incremental
stability property.

Both the incremental stability and the uniform convergence property can
be thought of as an open-loop observability property, i.e., the possibility to
construct an observer for the system that is based entirely on past input data.

In [2], equivalent notions of incremental stability have been derived, most
notably among them a characterization in terms of a merely continuous Lya-
punov function, albeit only for systems with right-hand sides not depending
explicitly on time. Other notions of incremental stability as, e.g., in [25] are
invariant under changes of coordinates. Here we focus on a notion similar to
that in [2], and, by extending a result from [2], we present a Lyapunov charac-
terization of incremental stability (see Theorem 5) for systems with right-hand
sides depending explicitly on time. In contrast, to date and to the best of our
knowledge no necessary and sufficient characterization in terms of a Lyapunov
function is known for the convergence property; however, a number of sufficient
conditions for uniform convergence based on Lyapunov functions can be found
in [16, 7, 23, 15, 14]. In addition, we also provide a characterization of global
uniform convergence in terms of a smooth Lyapunov function.

Another difference between the two properties is that incremental stability,
as defined in [2], is not invariant under changes of coordinates. For the purposes
of this paper, however, we will not pursue this aspect further and instead refer
the interested reader to the discussion in [26].

On the one hand, it might seem obvious that in general incremental stability
does not imply convergence, cf. Example 4 in this paper. Namely, for systems
whose trajectories converge to each other and at the same time tend to infinity
together, clearly, the unique xptq as in Definition 1, if it exists, would not be
bounded. On the other hand, one might be led to believe that the converse
implication could be true, i.e., that a convergent system is incrementally stable,
since when two different trajectories xpt, t0, ξ1q and xpt, t0, ξ2q tend to xptq, then
obviously they also tend to each other, as is depicted in Figure 1. This would
imply that the class of convergent systems is a proper subset of the class of
incrementally stable systems.

In this paper, we will argue that incremental stability and convergence are
indeed distinct stability notions. This claim is supported by several examples,
presented in Section 2. Herein, we first show that convergence does not imply
incremental stability, since the convergence of two trajectories towards each
other does not have to be uniform in the distance of the initial conditions.
Second, we show that if any two trajectories become eventually close (as is
the case in incrementally stable systems), that does not imply the existence
of a solution that is bounded forward and backward in time (as in convergent
systems). Still, these stability notions are related and we will present sufficient
conditions in Section 3 under which the one property implies the other. In that
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section we also provide converse Lyapunov results for incrementally stable and
uniformly convergent systems, which are of independent interest. All proofs
of these main results are provided in an appendix. The paper will close with
conclusions in Section 4.

Notation: By R` we denote the real half line r0,8q. Throughout the paper
we will denote by K the class of continuous and strictly increasing functions
κ : R` Ñ R` for which κp0q “ 0. A function ρ is of class K8 if it is of class K
and unbounded. A continuous function β : R2

` Ñ R` is of class KL if for any
fixed s ě 0, βp¨, sq P K and βps, ¨q is non-increasing with limtÑ8 βps, tq “ 0.

xpt, t0, ξ1q
xptq

xpt, t0, ξ2q

Figure 1: The uniform convergence property: Two solutions tending to the unique bounded
solution xp¨q.

2. Examples

Our first example is a system whose trajectories spiral counter-clockwise
towards a bounded solution zptq, but the further away from zptq one starts,
the faster the angular velocity is. So the solution zptq is globally asymptotically
stable, which is shown using a quadratic Lyapunov function, while two solutions
starting at t “ 0 an appropriately chosen distance ε ą 0 away from each other
get separated arbitrarily much in finite time, if they both start far away from
zptq.
Example 3 (A uniformly convergent system that is not GIS). For z P R2

consider the system

9zptq “
ˆ´ sin t

cos t

˙

` }zptq ´ zptq}22
ˆ´z2ptq ` sinptq
z1ptq ´ cosptq

˙

´ sat1

`}zptq ´ zptq}22
˘

ˆ

z1ptq ´ cosptq
z2ptq ´ sinptq

˙

,

(3)

4



where zptq “ pcos t, sin tqJ and satr : RÑ R is given by

satrpsq “

$

’

&

’

%

´r if s ď ´r
s if |s| ă r

r if s ě r.

Obviously, zptq is a bounded solution of (3) on R. Now consider the time-
varying quadratic Lyapunov function V pt, zq “ 1

2}z ´ zptq}22. Then it can be
verified that

9V “ d

dt
V pt, zptqq

“ ´ sat1

`}zptq ´ zptq}22
˘}zptq ´ zptq}22 ă 0

whenever zptq ‰ zptq, proving uniform global asymptotic stability of the bounded
solution zptq of (3). Hence the system is globally uniformly convergent. (See
also Theorem 7.) Rewriting xptq :“ zptq´ zptq in polar coordinates pr, φq yields,
in the region where r ą 1,

9r “ ´r
9φ “ r2 ,

which has solutions for initial values (in polar coordinates) pr0, φ0qJ, r0 ą 1,
explicitly given by

rptq “ r0e´t

φptq “ φ0 ` pr
0q2
2

`

1´ e´2t
˘

,
(4)

for t ě 0 such that rptq ą 1.
Claim: With M “ 2πe

e´1 there exist points ξ1, ξ2 with }ξ1´ ξ2} ďM such that
for any R ą 1 sufficiently large, cf.

}zp1{2, 0, ξ1q ´ zp1{2, 0, ξ2q} “
?
R`M `?R?

e
,

see Fig. 2. This implies that there cannot exist a KL function β such that (2)
holds and hence the system is not GIS.

Proof of the claim. Let R ą 1 be large enough such that solutions zpt, 0, ξiq
starting in ξ1 “ `?

R`M, 0
˘J`zp0q and ξ2 “ `

?
R, 0

˘J`zp0q satisfy }zpt, 0, ξiq´
zptq} “ }xpt, 0, ξi ´ zp0qq} ą 1 for all t P r0, 1{2s, i “ 1, 2. Observe that

}ξ1 ´ ξ2} “ `

M `?R`2?R´ 2
?
R`M˘˘1{2 ď ?M . Using (4), at time t “ 1{2

the difference of the respective angle functions φiptq “ φpt, 0, ξi´ zp0qq, i “ 1, 2,
satisfies

φ1p1{2q´φ2p1{2q “ pR`Mq{2p1´e´2tq´R{2p1´e´2tq “ M

2
p1´ 1{eq “ π . (5)

Denote correspondingly riptq “ rpt, 0, ξi ´ zp0qq, i “ 1, 2. Using (5),

}zp1{2, 0, ξ1q ´ zp1{2, 0, ξ2q}
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“ }xp1{2, 0, ξ1 ´ zp0qq ´ xp1{2, 0, ξ2 ´ zp0qq}
“ r1p1{2q ` r2p1{2q

“ ?R`Me´
1{2 `?Re´1{2 “

?
R`M `?R?

e
,

where the second equality is owed to the fact that xp1{2, 0, ξ1q and xp1{2, 0, ξ2q
are vectors pointing in opposite directions, as certified by (5).

1 R

1

xptq

„ 2
?
R

ď ?M

zpt, 0, ξ1q

zpt, 0, ξ2q

Figure 2: The two trajectories in Example 3 start on the positive real half line with an initial
separation less than

?
M at time t “ 0 and the lesser initial distance to the origin is R. At

time t “ 1{2 and under a suitable time-varying change of coordinates, the arguments of the
trajectories are shifted by 1800 so that the separation distance is about 2

?
R.

In the previous example, we have in fact shown that a bounded trajectory
can be globally asymptotically stable (GAS) and trajectories are not GAS with
respect to each other.

Another example is the system

9x “ ´ sat1 x.

Here the bounded solution is the origin xptq ” 0. The origin is globally asymp-
totically stable (hence the system is convergent), and yet the difference between
trajectories starting out arbitrarily close remains constant before the first of
them enters the unit ball. This system could be considered marginally GIS, as
the distance between trajectories cannot increase arbitrarily much in finite time
as in Example 3.

The second type of example, discussed next and concerning a GIS system
that is not uniformly convergent, is much easier to construct than the first,
as we only have to construct a system with one globally uniformly asymptot-
ically stable solution, which is unbounded in forward time. In fact, even a
one-dimensional counterexample can be realized.
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Example 4 (A system that is GIS but not uniformly convergent). Consider

9xptq “ t´ x , x P R , (6)

which has the explicit solution

xpt, t0, x0q “ x0e´t`t
0 `

ż t

t0
es´tsds

“ x0e´t`t
0 ` “ps´ 1qes´t‰s“t

s“t0

“ x0e´t`t
0 ` pt´ 1q ´ pt0 ´ 1qet0´t .

Obviously, the solution passing through x0 “ 0 at t0 “ 0 is unbounded.
Hence the system cannot be globally convergent (since otherwise the same solu-
tion would have to be attracted to a bounded solution as tÑ8).

Taking any ξ1, ξ2 P R then

d

dt

“

xpt, t0, ξ1q ´ xpt, t0, ξ2q‰ “ ´`xpt, t0, ξ1q ´ xpt, t0, ξ2q˘ ,

which implies
}xpt, t0, ξ1q ´ xpt, t0, ξ2q} ď }ξ1 ´ ξ2}e´t,

which, in turn, represents a KL-estimate on the difference between any two
solutions. So the system (6) is GIS.

This in turn implies that the solution passing through x0 “ 0 is globally
attractive, and hence no bounded solution can exist, so the system cannot be
convergent on a subset of Rn.

On the one hand, the above examples clearly show that the stability notions
of convergence and incremental stability are different. On the other hand, the
classes of GIS and convergent systems also have nonempty intersection: for
example, any linear system 9x “ Ax with A Hurwitz satisfies both properties.

3. When does uniform convergence imply incremental stability and
vice versa?

In this section, we present several sufficiency results regarding convergence
and incremental stability that show under which conditions one property implies
the other (see Sections 3.2 and 3.3).

In order to obtain one of the main results, we require a Lyapunov charac-
terization for GIS for systems of the form (1), which is of independent interest.
This converse Lyapunov result is presented in Section 3.1. Here we also provide
a Lyapunov characterization for global uniform convergence, which is essentially
based on standard converse Lyapunov results for uniform asymptotic stability.
However, we note that such a full Lyapunov-based characterisation of conver-
gence was lacking in the literature.

Our main results aim at answering the following two questions:
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1. When is a uniformly convergent system IS?

2. When is an IS system uniformly convergent?

The first question will be answered in Section 3.2 and the second one in Sec-
tion 3.3.

Briefly, Theorems 8 and 11 show that incremental stability and uniform
convergence are in fact equivalent, when system (1) evolves in a compact set.

On a global scale, more restrictive and less symmetric assumptions have to
be added, and we present one main theorem for each direction (Theorems 10
and 12).

All proofs in this section are provided in the appendix.

3.1. Converse Lyapunov results

In [2] a characterization of GIS in terms of a merely continuous Lyapunov
function has been derived for systems of the form

9x “ fpx, dq, (7)

where d is an arbitrary, measurable disturbance function taking values in a
closed subset D of Rm. However, the formulation (7) does not encode an explicit
dependence of the right-hand side f on time, and subsequently the Lyapunov
function shown to exist in [2] does not depend on time either.

Similarly, the existence result of a smooth Lyapunov function from a KL-
estimate in [22], while capable of capturing time-varying systems through the
state-space augmentation

9ξ “ d

dt

ˆ

x
t

˙

“
ˆ

fpt, xq
1

˙

“: F pξq,

imposes stronger conditions on the time-dependence than necessary for existence
and uniqueness of solutions, which we seek to avoid here.

A recent converse result established in [8] provides locally Lipschitz continu-
ous Lyapunov functions for non-autonomous differential equations, utilizing the
theory of skew-product flows, which adds more technical overhead than would
seem appropriate for our purposes.

Therefore, we propose the following result that shows the existence of a
time-varying Lyapunov function for global incremental stability.

Theorem 5. System (1) is GIS if and only if there exist a continuous function
W : Rˆ Rn ˆ Rn Ñ R, functions α1, α2, α3 of class K8 such that

1. the inequalities

α1p}x1 ´ x2}q ďW pt, x1, x2q ď α2p}x1 ´ x2}q (8)

hold for all x1, x2 P Rn and t P R;
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2. along trajectories of (1) for any ξ1, ξ2 P Rn, and any t ě t0 it holds that

W
`

t, xpt, t0, ξ1q, xpt, t0, ξ2q˘´W pt0, ξ1, ξ2q

ď ´
ż t

t0
α3

`}xpτ, t0, ξ1q ´ xpτ, t0, ξ2q}˘dτ. (9)

In this result we can trade the unboundedness of α3 for a Lipschitz-like
property of the Lyapunov function W as formalized in the next corollary. This
corollary will be instrumental in the proof of Theorem 12.

Corollary 6. If system (1) is GIS then there exist a continuous function
W : Rˆ Rn ˆ Rn Ñ R, functions α1, α2 P K8, and a positive definite function
α3 such that the inequalities (8) and (9) hold. Moreover, there exists a function
γ P K8 so that for all z1, z2 P Rn ˆ Rn and all t0,

|W pt0, z1q ´W pt0, z2q| ď γp}z1 ´ z2}q. (10)

Condition (10) implies uniform continuity of W with respect to z, which
itself is equivalent to the existence of a class K function ζ such that

ζp|W pt0, z1q ´W pt0, z2q|q ď }z1 ´ z2}
for all t0 P R and all z1, z2 P Rn ˆ Rn. However, ζ does not necessarily need to
be invertible, and hence (10) is a bit stronger than uniform continuity.

The proof of the preceding theorem is rather complex, see Appendix A.1. In
contrast, for global uniform convergence we can obtain a corresponding charac-
terization using a standard converse Lyapunov result, [11, Theorem 23], which
for our purposes reads as follows.

Theorem 7. Assume that system (1) is globally uniformly convergent. Assume
that the function f is continuous in pt, xq and C1 with respect to the x variable.
Assume also that the Jacobian B

Bxfpt, xq is bounded, uniformly in t. Then there
exists a C1 function V : R ˆ Rn Ñ R`, functions α1, α2, and α3 P K8, and a
constant c ě 0 such that

α1p}x´ xptq}q ď V pt, xq ď α2p}x´ xptq}q (11)

and BV
Bt `

BV
Bx fpt, xq ď ´α3p}x´ xptq}q (12)

and
V pt, 0q ď c, t P R. (13)

Conversely, if a differentiable function V : RˆRn Ñ R` and functions αi P K8,
i “ 1, 2, 3, and c ě 0 are given such that for some trajectory x : R Ñ Rn
estimates (11)–(13) hold, then system (1) must be globally uniformly convergent
and the solution x is the unique bounded solution as in Definition 1.
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The proof of this result is an application of Massera’s result to (1) under
the change of coordinates zptq “ xptq ´ xptq. The only addition is (13), which
is equivalent to the boundedness of xptq. For if xptq is bounded forward and
backward in time, i.e., suptPR }xptq} ă 8, then 0 ď V pt, 0q ď α2p}xptq}q ď
supτPR α2p}xpτq}q “: c ă 8. On the other hand, if (13) holds, then the solution
x must be bounded forward and backward in time, since for all t P R we have

}xptq} ď α´1
1 pV pt, 0qq ď α´1

1 pcq ă 8.

3.2. From convergence to incremental stability

The following theorem is a new sufficiency condition for incremental stability.

Theorem 8. Suppose system (1) is uniformly convergent on a compact set X .
Then, it is also incrementally stable on that set.

Remark 9. Let us now briefly revisit Example 3 given the result in Theorem 8.
Example 3 concerns a system that is globally uniformly convergent, but not GIS.
Since the system is globally uniformly convergent, it is also uniformly conver-
gent on compact, positively invariant sets and Theorem 8 shows that it is also
incrementally stable on such compact sets. Note that the argument against it
being GIS does not imply that it is not incrementally stable on compact posi-
tively invariant sets, since R in the example can not be chosen arbitrarily large
when considering initial conditions on compact sets.

If system (1) does not evolve in a compact set then additional conditions on
the vector field f allow to infer one stability property from the other.

Let us now formulate conditions under which a globally convergent system
is also globally IS. In general, while also for convergent systems all trajectories
approach each other, they may do so non-uniformly in the initial separation
distance, as could be seen from Example 3. The idea of the next result is to
enforce this uniformity by an additional assumption on a (non-strict, quadratic)
Lyapunov function for a globally convergent system.

Theorem 10. Suppose system (1) is globally uniformly convergent. Assume
that also the assumptions of Theorem 7 are satisfied. Assume further that there
exists a positive definite matrix P P Rnˆn, i.e. P “ PJ ą 0, a constant C ą 0,
and a continuous positive definite function α4 : R` Ñ R` such that for all times
t P R and all x1, x2 P Rn

px1 ´ x2qJP `

fpt, x1q ´ fpt, x2q˘

ď
#

´α4p}x1 ´ x2}q if maxt}x1}, }x2}u ě C,

0 otherwise.

(14)

Then (1) is GIS.

Examples of systems to which Theorem 10 is applicable include all so-called
quadratically convergent systems, see [14], i.e., globally convergent systems
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where the convergence property is characterized by a quadratic Lyapunov-type
function. This also includes systems satisfying the convergence conditions in
[23, 7].

On the other hand, it is interesting to ask when an IS system is also conver-
gent. This will be answered in the next section.

3.3. From incremental stability to convergence

Let us recall one of Demidovich’s results [7], which can be found as Theo-
rem 1 in [13]. This result provides a sufficiency condition for system (1), with f
continuously differentiable in x, being GIS, namely that there exists a positive
definite matrix P “ PJ so that

Jpx, tq “ 1

2

„

P
Bf
Bx pt, xq `

´Bf
Bx pt, xq

¯J

P



(15)

is negative definite uniformly in pt, xq P R1`n. It also provides a sufficiency
condition,

}fpt, 0q} ď c ă 8, (16)

following ideas by Yakubovich and Demidovich, which together with (15) guar-
antee the positive invariance and global asymptotic stability of a compact set
Ω :“ tx P Rn : xJPx ď Cu with a constant C depending on P and c.

Interestingly, condition (15) actually implies that all solutions of (1) are
globally uniformly exponentially stable, cf. [13], i.e., it implies even more than
GIS. So in light of Example 3 this condition appears to be stronger than required.
In effect, this condition imposes the existence of a quadratic Lyapunov function
V px1 ´ x2q “ px1 ´ x2qJP px1 ´ x2q on the differences between trajectories. A
more general version using Lyapunov functions V px1, x2q of two arguments can
be found in [15, Theorem 2.40, p.28]. This general type of Lyapunov function
would usually not imply exponential incremental stability, but it still implies
GIS.

Below, we present a result that IS on compact sets implies uniform conver-
gence on compact sets, where the implication does not hinge on the existence
of certain (incremental) Lyapunov functions.

Theorem 11. Suppose system (1) is incrementally stable in a compact set X .
Then it is also uniformly convergent in X .

Finally, we present a result providing conditions under which global incre-
mental stability implies global uniform convergence. Results tailored specifically
to dissipative, periodic systems have been presented in [16]. The result below is
formulated for the more general class of time-varying systems of the form (1).

Theorem 12. Suppose that system (1) is GIS, where f : Rn`1 Ñ Rn is locally
Lipschitz in x P Rn. Then, the following statements hold:

1. There exists a sufficiently small c ě 0 such that if }fpt, 0q} ď c, for all
t P R, then system (1) is globally uniformly convergent;

11



2. If there exists a compact set Ω Ă Rn that is positively invariant with respect
to (1), then system (1) is globally uniformly convergent.

The magnitude of c ě 0 is a measure of the magnitude of the vector field
fpt, 0q. As we are employing a converse Lyapunov result in the proof of Theo-
rem 12, we cannot provide a more explicit formula that c needs to satisfy. Please
note that for c “ 0 the result is obvious, since then the origin is a globally asymp-
totically stable equilibrium. However, when a GIS-Lyapunov function is known,
the assumption on the vector field can be made more explicit, as in the following
corollary.

Corollary 13. Assume that there exist functions W , α3, and γ as in Corol-
lary 6. Let c ě 0 be such that for all small h ą 0,

}fpt, 0q}h ď ch ă γ´1phα3prqq (17)

for some r ą 0. Then system (1) is globally uniformly convergent.

Remark 14. The existence of a positively invariant compact set in the second
statement of Theorem 12 can be inferred from explicit conditions on the vector
field f and the boundary of a compact candidate set K Ă Rn.

One such condition, cf. [4, Theorem 5] or [3, Theorem 11.6.2], is that there
exists an integrable function k P L1pR,Rq such that f : RˆX Ñ Rn is Lipschitz
with respect to x in the sense that

}fpt, xq ´ fpt, yq} ď kptq}x´ y}. (18)

Then K is positively invariant under (1) if for all t P R and x P BK (the
boundary of K),

fpt, xq P
"

v P Rn : lim inf
hŒ0

dKpx` hvq
h

“ 0

*

(19)

where
dKpyq :“ inf

xPK
}y ´ x}

is the distance from y to K.

Remark 15. We note that, for smooth systems, the Lyapunov-based sufficient
conditions for uniform convergence in [7, 23, 13] are special cases of Theorem 12
in the sense that quadratic Lyapunov functions are employed to characterise in-
cremental stability properties (and the existence of a compact positively invariant
set). Hence, the classes of systems treated in these references can be considered
examples satisfying the conditions of Theorem 12.

It should also be noted that in the result of Demidovich [7, 13] also the
condition }fpt, 0q} ď c, @t, with c ą 0, is employed as in claim 1) in Theorem 12.
However, by the grace of the fact that quadratic Lyapunov functions are used
in [7, 13] to characterise incremental stability properties, the satisfaction of
}fpt, 0q} ď c, @t, for any c ą 0 is sufficient to prove global uniform convergence
in [7, 13].
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4. Conclusions

The global uniform convergence property and global incremental asymptotic
stability are very related and yet different properties. This paper in particu-
lar contributes examples of systems that are globally uniformly convergent but
not globally incrementally stable (and vice versa). These examples further il-
luminate the essential differences between these stability notions. Moreover,
we present results that state sufficient conditions under which the one property
implies the other.
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[8] L. Grüne, P. E. Kloeden, S. Siegmund, and F. R. Wirth, “Lyapunov’s second
method for nonautonomous differential equations,” Discrete and Continuous
Dynamical Systems, vol. 18, no. 2&3, pp. 375–408, 2007.

[9] D. Hinrichsen and A. J. Pritchard. Mathematical Systems Theory I —
Modelling, State Space Analysis, Stability and Robustness. Springer, Berlin,
2005.

[10] V. Fromion, G. Scorletti, G. Ferreres, “Nonlinear Performance of a PI
Controlled Missile: An Explanation,” International Journal of Robust and
Nonlinear Control, vol. 9, pp. 485–518, 1999.

[11] J. L. Massera, “Contributions to stability theory,” Ann. of Math. (2),
vol. 64, pp. 182–206, 1956.

13



[12] A. Pavlov, N. van de Wouw, and H. Nijmeijer, “Frequency response func-
tions for nonlinear convergent systems,” IEEE Transactions on Automatic
Control, vol. 52, no. 6, pp. 1154–1159, 2007.

[13] A. Pavlov, A. Pogromsky, N. van de Wouw, and H. Nijmeijer, “Convergent
dynamics, a tribute to Boris Pavlovich Demidovich,” Systems Control Lett.,
vol. 52, no. 3-4, pp. 257–261, 2004.

[14] A. Pavlov, A. Pogromsky, N. van de Wouw, and H. Nijmeijer, “On con-
vergence properties of piecewise affine systems,” International Journal of
Control, vol. 80, no. 8, pp. 1233–1247, 2007.

[15] A. Pavlov, N. van de Wouw, and H. Nijmeijer, Uniform output regulation of
nonlinear systems. A convergent dynamics approach. Birkhäuser, Boston,
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A. Appendix – Proofs and auxiliary results

A.1. Proof of the converse Lyapunov results in Section 3.1

Proof of Theorem 5. The proof is similar to the proof given by Angeli [2], but
there are some significant and non-obvious differences that we will elaborate on.
The main difference and technical difficulty lies in the fact that while the sys-
tems (7) considered in [2] can depend on a time-varying perturbation, they may
not depend on time explicitly. In contrast, our characterization of incremental
stability is for systems depending explicitly on time. The main differences are
thus related to the uniformity of the decay of the Lyapunov function. This
boils down to a different definition for Upt0, z0q in step 3 of the proof, as com-
pared to Angeli’s proof. Another difference is the use of Sontag’s Lemma on
KL-functions in step 7, where another argument was used in the original proof.
Finally, we use a scaling argument similar to the one used in [20] in order to
obtain a decay rate of class K8 in step 8.

The ‘if’-part of the proof follows standard arguments (see, e.g., [9, Theo-
rem 3.2.7]) and is thus omitted. In the following we treat the ‘only if’-part.

Let us adopt the following notation for this proof. We consider

9x “ fpt, xq (20)

and

9z “ d

dt

ˆ

x1

x2

˙

“
ˆ

fpt, x1q
fpt, x2q

˙

(21)

as in [2]. We have that the diagonal ∆ :“ tpxJ, xJqJ : x P Rnu Ă R2n is GAS
w.r.t. system (21) if and only if system (20) is GIS, as is shown in Lemma 2.3

in [2]2. The distance of a point z “
ˆ

x1

x2

˙

to the diagonal ∆ is given by

}z}∆ :“ inf
wP∆

}w ´ z}

and it is shown in [2] that this equals

}z}∆ “ 1?
2
}x1 ´ x2}.

Now to the details of the proof:

2Note that [2, Lemma 2.3] holds also true for (explicitly) time-dependent nonlinear sys-
tems (21), although in [2] “disturbance-dependent” systems are considered.
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1. First we define
gpt0, z0q :“ sup

tět0
}zpt, t0, z0q}∆ (22)

which satisfies for the K8 functions rα1 “ id and rα2 “ βp¨, 0q, where β
comes from the definition of GIS, the estimate

rα1p}z}∆q ď gpt, zq ď rα2p}z}∆q (23)

for all z P R2n and t P R. Observe that the supremum in (22) is in fact
a maximum, since }zp¨, t0, z0q}∆ is continuous and tends to zero as time
tends to infinity. The function g also satisfies the continuity property

|gpt, z1q ´ gpt, z2q| ď ?2βp2}z1 ´ z2}∆, 0q
“:

rγp}z1 ´ z2}∆q,
(24)

for all z1, z2 P R2n and t P R. This can be proved as per Fact 2.5 in [2].

2. Along solutions the function g is obviously non-increasing: For s ą 0 we
have

gpt0, z0q ě gpt0 ` s, zpt0 ` s, t0, z0qq.
3. Now define

Upt0, z0q :“ sup
sě0

gpt0 ` s, zpt0 ` s, t0, z0qqkpsq,

where k is any continuously differentiable, positive, increasing function for
which there exist 1 ď c1 ă c2 such that kptq P rc1, c2s for all t P R`, and
the derivative of k is bounded from below by some positive and decreasing
function d, i.e. 9kptq ě dptq for all t P p0,8q. Necessarily dptq Ñ 0 as
t Ñ 8, since otherwise (and because dptq ě 0) k would grow without
bound.

4. In view of c2 ě kptq ě c1 ě 1 for all t P R` and (23) it follows that

Upt0, z0q ě gpt0, z0q ě }z0}∆ (25)

and
Upt0, z0q ď c2rα2p}z0}∆q. (26)

Using the relation }z}∆ “ 1?
2
}x1 ´ x2}, the inequalities (25) and (26)

establish

α1p}x1 ´ x2}q :“ 1?
2
}x1 ´ x2} ď Upt0, x1, x2q and

Upt0, x1, x2q ď c2rα2

´}x1 ´ x2}?
2

¯

“: α2p}x1 ´ x2}q.
(27)

5. From the definition of U it follows that for all t0 P R and any z1, z2 P R2n

and for all ε ą 0 there exists an sε “ sε,t0,z1 ě 0 such that

Upt0, z1q ď ε` gpt0 ` sε, zpt0 ` sε, t0, z1qqkpsεq.
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This inequality yields, in view of kptq ď c2 for all t P R` and (24), in a
few steps (refer to Angeli’s proof in [2]) that

Upt0, z1q ´ Upt0, z2q ď ε` rγpβp}z1 ´ z2}, 0qqc2.
With ε arbitrary and using a symmetry argument we arrive at |Upt0, z1q´
Upt0, z2q| ď γp}z1 ´ z2}q, where γprq “ rγ

`

βpr, 0q˘c2.

6. By definition, U is non-increasing along solutions. We will now show that
U strictly decreases along solutions of (21).
By the definition of U , for all r ą 0 and z0 P R2n with }z0}∆ “ r, for all
t0 P R, all h ą 0, and all ε ą 0, there exists an s “ sε,h,t0,z0 ě 0 such that
we can show that

Upt0 ` h, zpt0 ` h, t0, z0qq
ď Upt0, z0q

„

1´ kph` sq ´ kpsq
c2



` ε. (28)

7. Now we would like to let h Œ 0 and ε Ñ 0 in (28) to obtain an estimate
on the decay of U along solutions of (21). For this we have to ensure that
s in (28) does not grow without bound when ε and h tend to zero.
Claim: For all r ą 0 there exists a T “ T prq ą 0 such that s in (28)
satisfies s ď T , independent of the choice of h ą 0 and ε ą 0.
Proof: We start by recalling a known fact. From Sontag’s Lemma on
KL-functions [19] it is known that for any β P KL there exist functions
κ1, κ2 P K8 such that for all r, t P R`,

βpr, tq ď κ1

`

κ2prqe´t
˘

. (29)

A simple consequence of (29) is that for any δ ą 0 we have

βpr, tq ă δ whenever t ą ln
κ2prq
κ´1

1 pδq . (30)

Now we prove the claim. We know from estimates (25) and (26) that

0 ă r “ }z0}∆ ď Upt0, z0q ď c2Ăα2prq.
Continuity and monotonicity properties of U along trajectories of (21)
with }z0}∆ “ r yield that for some ν ą 0, µ ą 0,

ν ` ε ă Upt0, z0q ´ µ
ă Upt0 ` h, zpt0 ` h, t0, z0qq
ď Upt0, z0q

(31)

for all 0 ă h ă h “ hpεq if ε ą 0 is sufficiently small, which we will
henceforth assume.
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Let δ “ ν{c2 and let us assume that no finite T ą 0 as in the claim exists.
Then for every integer N ą 0 there must exist an s ą N such that (28)
holds for this s, i.e., we can show that

Upt0 ` h, zpt0 ` h, t0, z0qq ď βp}z0}∆, h` sqc2 ` ε
ă ν ` ε whenever s ą ln

κ2prq
κ´1

1 pν{c2q due to (30).

Considering (31) we arrive at the contradiction

ν ` ε ă Upt0 ` h, zpt0 ` h, t0, z0qq ă ν ` ε
thus proving the claim. ˝

Hence we have shown that we can pass to an appropriate limit in (28) as
hŒ 0 and εÑ 0, since s “ sε,h,t0,z0 in (28) remains bounded.

8. Following essentially the same arguments as in [2] we obtain for some
positive definite function rα3,

9Upt0, z0q :“ lim sup
hŒ0

Upt0 ` h, zpt0 ` h, t0, z0qq ´ Upt0, z0q
h

ď ´rα3p}z0}∆q.
At this stage it is left to show that we can modify U such that the function
rα3 can be taken to be of class K8. The argument we are going to make
follows the idea in [20].
To this end let µ, ρ P K8 such that ρ1 “ µ and that s ÞÑ pµ ˝α´1

1 qpsqrα3psq
is bounded from below by some class K8 function α3. This is always
possible.
Define W :“ ρpUq and verify using (27) that it satisfies bounds (8) with
αi “ ρ ˝ αi, i “ 1, 2. Compute

9W pt0,z0q :“ lim sup
hŒ0

W pt0 ` h, zpt0 ` h, t0, z0qq ´W pt0, z0q
h

“ lim sup
hŒ0

ρ1pUpτt0,h, zpτt0,h, t0, z0qqq¨

Upt0 ` h, zpt0 ` h, t0, z0qq ´ Upt0, z0q
h

(32)

ď ´ρ1`α´1
1 p}z0}∆q

˘ ¨ rα3p}z0}∆q
ď ´α3p}z0}∆q,

with rα3 P K8 and where in equation (32) we have used the mean value

theorem to obtain a sequence τt0,h
hÑ0ÝÑ t0 of points in pt0, t0`hq, followed

by continuity of ρ1 and U with respect to time.
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9. Now, following again the same arguments as in [2] we obtain for t ě t0,

W pt, zpt, t0, z0qq´W pt0, z0q ď ´ şt

t0
α3p}zps, t0, z0q}∆qds, which proves the

inequality (9) in the theorem. This completes the proof of the theorem.

Proof of Corollary 6. Just take instead of W the function U defined in the pre-
ceding proof at the end of step 5, it satisfies all the requirements by construction.
Without loss of generality, the function γ can be taken to be class K8.

A.2. Proofs of the results in Section 3.2 (From convergence to incremental sta-
bility)

Proof of Theorem 8. For future reference we denote dX :“ maxx,yPX }x ´ y},
the diameter of X . Note that without loss of generality we can assume that
the closure of the trajectory x (which is a compact set) is contained in X , i.e.,
Ť

tPRtxptqu Ă X .
We are going to show that differences of solutions satisfy the uniform attrac-

tion and stability properties for restricted initial conditions.
Uniform attraction: For any ε ą 0 there exists a T ą 0 such that for any

ξ P X , }xpt, t0, ξq ´ xptq} ď βpdX , t ´ t0q ď ε{2 if t ´ t0 ě T . By the triangle
inequality it follows that for any ξ, η P X , }xpt, t0, ξq´xpt, t0, ηq} ď ε if t´t0 ě T .
This shows that all solutions starting in X are mutually uniformly attractive.

Uniform stability: The following argument follows ideas in the proof of [18,
Theorem 55]. Let ξ1, ξ2 P X and t0 P R be arbitrary. In view of item 3
of Definition 1 we have that }xpt, t0, ξ1q ´ xpt, t0, ξ2q} ď 2βpdX , t ´ t0q for all

t ą t0, i.e., there exists a KL function pβ such that

}xpt, t0, ξ1q ´ xpt, t0, ξ2q} ď pβpdX , t´ t0q for all t ą t0.

Thus there exists a compact set Y Ą X which contains all solutions with initial
values in X (in fact, X is positively invariant, so Y “ X ). Write x1ptq :“
xpt, t0, ξ1q and x2ptq :“ xpt, t0, ξ2q. Regarding

x1ptq ´ x2ptq “ ξ1 ´ ξ2 `
ż t

t0
rfps, x1psqq ´ fps, x2psqqsds

for all t ě t0, we have due to the local Lipschitz condition on f and the com-
pactness of X that there exists a locally integrable function α : R Ñ Rě0, cf.
[18, Appendix C], such that for all t ě t0,

}x1ptq ´ x2ptq} ď }ξ1 ´ ξ2} `
ż t

t0
αpsq}x1psq ´ x2psq}ds

Thus, with Gronwall’s inequality we arrive at

}x1ptq ´ x2ptq} ď }ξ1 ´ ξ2}e
`

şt
t0
αpsqds

˘

for all t ě t0. As }x1ptq ´ x2ptq} ď pβpdX , t´ t0q for all t ě t0, we arrive at

}x1ptq ´ x2ptq} ď min

"

}ξ1´ξ2}e
`

şt
t0
αpsqds

˘

, pβpdX , t´t0q
*

.
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From there we can obtain a KL function rβ such that

}xpt, t0, ξ1q ´ xpt, t0, ξ2q} ď rβp}ξ1 ´ ξ2}, t´ t0q
for all ξ1, ξ2 P X , t0 P R and t ě t0.

Proof of Theorem 10. By Theorem 7, which is about the characterization of
the uniform convergence property, there exists a Lyapunov function V satisfy-
ing (11) and (12). The solution x is bounded on R, i.e. there exists a C2 ě 0
such that }xptq} ď C2 for all t P R. Without loss of generality we can as-
sume that C ´ C2 ą 0, if necessary by enlarging C for which (14) is satis-
fied. There also exist positive constants cP , CP such that for all x1, x2 P Rn,
cP }x1 ´ x2}2 ď px1 ´ x2qJP px1 ´ x2q ď CP }x1 ´ x2}2.

Denote K :“  px1, x2q P Rn ˆ Rn : maxt}x1}, }x2}u ď C
(

. On the compact
set K we have V pt, x1q`V pt, x2q ď α2p}x1´xptq}q`α2p}x2´xptq}q ď 2α2pC`
C2q, where V is given by Theorem 7.

Let us define W pt, x1, x2q :“ 1
2b
`

V pt, x1q ` V pt, x2q˘ px1 ´ x2qJP px1 ´ x2q
where bpsq “ s{p1` sq is a bounded class K function. We have

W pt, x1, x2q ď 1

2
CP }x1 ´ x2}2

“:
rα2p}x1 ´ x2}q

since bpsq ď 1 for all s ě 0. We also have that

W pt, x1, x2q ě 1

2
b
`

α1p}x1 ´ x}q
` α1p}x2 ´ xq˘cP }x1 ´ x2}2

ě 1

2
b

ˆ

α1

ˆ

1

2
}x1 ´ x}

` 1

2
}x2 ´ x}

˙˙

cP }x1 ´ x2}2

ě 1

2
b

ˆ

α1

ˆ}x1 ´ x2}
2

˙˙

cP }x1 ´ x2}2

“:
rα1p}x1 ´ x2}q.

So W is positive definite and radially unbounded in the distance }x1 ´ x2}.
Denoting 9V pxiq :“ BV

Bt ` BV
Bx fpt, xiq ď ´α3p}xi´xptq}q as per (12) and d

dsbpsq
by b1psq, we compute the time-derivative of W as

9W :“ d

dt
W pt, x1ptq, x2ptqq

“ b1
`

V pt, x1q ` V pt, x2q˘r 9V px1q ` 9V px2qs
¨ 1

2
px1 ´ x2qJP px1 ´ x2q

` b`V pt, x1q ` V pt, x2q˘
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¨ px1 ´ x2qJP `

fpt, x1q ´ fpt, x2q˘ . (33)

On the set K, the first term in the right-hand side of (33) is bounded from
above by

´ 1

2
α3

ˆ}x1 ´ x2}
2

˙

cP }x1 ´ x2}2
`

1` 2α2pC ` C2q
˘2

while the second term in the right-hand side of (33) is nonpositive due to (14).
Outside of K the first term could be arbitrarily small in magnitude as b1psq Ñ 0
for sÑ8, while this term is still negative. Hence, outside of K, (33) is bounded
from above by

b
`

2α1pC ´ C2q
˘px1 ´ x2qJP `

fpt, x1q ´ fpt, x2q˘

ď ´α4p}x1 ´ x2}qb`2α1pC ´ C2q
˘

,

again due to (14). It follows that 9W is bounded from above by a function which
is negative definite with respect to the set where x1 “ x2. A standard scaling
argument (see [20]) with U “ ρpW q for a suitable function ρ P K8 turns this
into a smooth Lyapunov function satisfying 9U ď ´α5pUq with α5 P K8. This
function U in particular satisfies (8) and (9). Hence, by virtue of Theorem 5 we
conclude that system (1) is indeed GIS.

A.3. Proofs of the results in Section 3.3 (From incremental stability to conver-
gence)

We start with an auxiliary result.

Proposition 16. Let A Ă Rn be a compact and positively invariant set for
system (1). Then there exists a solution xptq in A which is defined for all times.

The proof is a simplified version of [23, Lemma 2] and omitted for the sake
of brevity.

Proof of Theorem 11. By Proposition 16 there exists a bounded solution xptq
in X which is defined for all times. As all solutions are uniformly attractive, so
is xptq.

The uniqueness proof follows the same reasoning as the proof of Property 2.4
in [15].

Proof of Theorem 12. Let us first show that the condition in claim 1. in the
theorem together with the fact that the system is GIS implies the existence of
a compact positively invariant set Ω Ă Rn.

According to Corollary 6, the fact that the system is GIS implies that there
exists a continuous function W pt, x1, x2q satisfying (8) and (9) with α1,α2 P K8
and α3 positive definite and there exists a function γ P K8 such that (10) holds.

With V pt, xq :“W pt, x, 0q and for h ą 0 sufficiently small, we compute

V pt0 ` h, xpt0 ` h, t0, ξqq ´ V pt0, ξq
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“W pt0 ` h, xpt0 ` h, t0, ξq, 0q ´W pt0, ξ, 0q
“W pt0 ` h, xpt0 ` h, t0, ξq, 0q ´W pt0, ξ, 0q
`W pt0 ` h, xpt0 ` h, t0, ξq, xpt0 ` h, t0, 0qq
´W pt0 ` h, xpt0 ` h, t0, ξq, xpt0 ` h, t0, 0qq

(9)ď ´
ż t0`h

t0
α3

`}xpτ, t0, ξq ´ xpτ, t0, 0q}˘dτ (34)

`W pt0 ` h, xpt0 ` h, t0, ξq, 0q
´W pt0 ` h, xpt0 ` h, t0, ξq, xpt0 ` h, t0, 0qq.

+

(35)

The last inequality proves the existence of a compact positively invariant set if
the term (34) dominates the term (35), so that the entire expression becomes
negative for large enough ξ.

For (35) we compute, using the Landau symbol O,

W pt0 ` h, xpt0 ` h, t0, ξq, 0q
´W pt0 ` h, xpt0 ` h, t0, ξq, xpt0 ` h, t0, 0qq
(10)ď γ

ˆ
›

›

›

›

ˆ

xpt0 ` h, t0, ξq
0

˙

´
ˆ

xpt0 ` h, t0, ξq
xpt0 ` h, t0, 0q

˙
›

›

›

›

˙

“ γp}xpt0 ` h, t0, 0q}q ď γp}fpt0, 0q}h`Oph2qq
ď γpch`Oph2qq “: C.

For large ξ P Rn the integral in (34) dominates C, if c is chosen sufficiently
small. In this case we have 9W ă 0 outside a compact set, rendering the said
compact set positively invariant.

Now, we have that under the conditions of claims 1. and 2. in the theorem,
there exists a compact positively invariant set for system (1). By Proposition 16,
the existence of a compact positively invariant set implies the existence of a
solution x̄ptq which is defined and bounded for all t P R.

This solution xptq is uniformly globally asymptotically stable, since all solu-
tions are uniformly globally asymptotically stable (since the system is GIS by
assumption). From here it follows that xptq must also be unique, see [15, p.15,
Property 2.15]. This completes the proof.

Proof of Corollary 13. We use the same notation as in the previous proof. If
c ě 0 is chosen such that (17) holds then the increments of V are non-positive
outside a compact set in the preceding proof.
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