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There exist various approaches to the mathematical modelling of dynamic 
processes occurring in shop floor logistics. These include methods from 
queuing theory or use dynamical systems given by ordinary or partial 
differential equations (fluid models). If the number of elements within the 
process is large it can become prohibitively complex to analyse and 
optimize a given logistic process or the corresponding mathematical model 
using global strategies. A new approach is to provide for an autonomy of 
various smaller entities within the logistic network, i.e. for the possibility 
of certain elements to make their own decisions. This necessitates changes 
in the appropriate mathematical models and opens the question of stability 
of the systems that are designed. In this paper we discuss the fundamental 
concepts of autonomy within a logistic network and mathematical tools 
that can be used to model this property. Some remarks concerning the 
stability properties of the models are made. 

Introduction 

In a production network (e.g. on shop floor level), the flow of parts is 
usually pre-planned by a central supervisory or control system. This 
approach fails for large scale networks in the presence of highly 
fluctuating demand or unexpected disturbances [21]. One of the reasons 
for this phenomenon is that in practice the complexity of centralized 
control architectures tends to grow rapidly with the size of the network, 
resulting in rapid deterioration of fault tolerance, adaptability and 
flexibility [25]. 

 
An advantageous alternative is the management of the dynamic 

behaviour according to the requirements of production logistics. In this 
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sense the development of decentralised and autonomous control strategies 
is a promising research field [27]. Here autonomous control describes a 
decentralised coordination of intelligent logistic objects (parts, machines 
etc.) and the allocation of jobs to machines by the intelligent parts 
themselves. Therefore, there are no standard policies for production 
logistics that may be readily applied. Instead, strategic policies have to be 
derived that enable the parts to decide autonomously, instantaneously and 
using locally available information only to choose between different 
alternatives. The application of autonomous control in production 
networks leads to a coalescence of material flow and information flow and 
enables every part or product to manage and control its manufacturing 
process autonomously [7]. The dynamics of such a system depends on the 
local decision-making processes and produces a system’s global behaviour 
that has new emerging characteristics [20]. 

 
In the literature several attempts may be found to explain the emergent 

behaviour of large scale structures that arise from autonomous control 
policies. First intuitive approaches suggest to set up a policy like ‘go to the 
machine with the shortest processing time’ or ‘go to the machine with the 
lowest buffer level’ [28], [29] etc. More sophisticated autonomous control 
strategies can be found in biological systems. Camazine et al. [11] give a 
good overview and some case studies of self-organized behaviour in 
biological systems. Their case studies comprise social insects, slime 
moulds, bacteria, bark beetles, fireflies and fish. According to the authors 
biological self-organization can be found in group-level behaviour that 
arises in most cases from local individual actions that are influenced by the 
actions of neighbours or predecessors and in structures that are build 
conjointly by individuals. They identify positive feedback as a “key 
ingredient” of self-organization. Positive feedback is a method that enables 
and endorses change in a system. In ant colonies for example, a scout ant 
that has found food lays down a pheromone trail as it returns to the nest. 
By changing the environment, succeeding ants may simply follow the trail 
and find the food, which in turn reinforce the trail with their pheromone 
[22].  

 
Ant colony optimization (ACO, see e.g. [7], [18]) uses positive feedback 

with the help of artificial pheromones and is used to solve discrete 
optimization problems like the travelling salesman problem and the 
quadratic assignment problem. Logistics applications of the ACO concept 
can be found for example in Gambardella et al. [19], where the authors 
find solutions to vehicle routing problems with time windows and in 
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Bautista et al. [6], where ACO is applied to an assembly line balancing 
problem for a bike factory. Applications of the pheromone concept for 
manufacturing control can be found in Peeters et al. [23] and Armbruster et 
al. [1] where pheromones are used to find a control system for a flexible 
shop floor.  

 
Brückner et al. [9], [10] suggested implementing the pheromone concept 

to organize production systems as multi-agent systems. The authors call 
the approach a “synthetic ecosystems” and present a formal software 
infrastructure as well as a real-world example. In their “guided 
manufacturing control system” they combine distributed and reactive 
control in their control subsystem with a global advisory subsystem. 

 
A concept that uses the interaction between nearest neighbours but does 

not rely on pheromones is the idea of a bucket brigade, which was 
introduced by Bartholdi et al. [5]. A bucket brigade is a production line 
setup, where workers independently follow simple rules that determine 
what to do next. The rules are: a) Process your work until you meet a 
downstream worker. If so, give him your work. b) If you do not have 
work, go upstream until you meet another worker and continue with his 
job. c) If you are the first worker and you do not have work, then start a 
new job. d) If you are the last worker, then finish the job and follow rule 
b). The authors show that such a bucket brigade is self-balancing and 
results in a global optimum if the workers are sequenced from slowest to 
fastest. The concept has been extended to bucket brigades with worker 
learning by Armbruster et al. [2]. 

 
In order to develop and analyse autonomous control strategies dynamic 

models are required. For production systems several model classes have 
been investigated. These can be divided in discrete and continuous models. 

 
Discrete models are based on the consideration of individual parts in a 

network of machines. Queuing networks (e.g. with re-entrant lines) can be 
used to model complex manufacturing systems such as wafer fabrication 
facilities. The advantage of such models is the possibility to assign 
decision rules to machines and parts. Stability of such networks is defined 
probabilistically in terms of Harris recurrence and is often hard to check. 
For single class networks, which are also called generalized Jackson 
networks, with work-conserving disciplines such as the FIFO priority 
discipline or the processor sharing discipline, stability is guaranteed by the 



4      Scholz-Reiter B, Wirth F, Freitag M, Dashkovskiy S, Jagalski T, de Beer C, 
Rüffer B 

usual traffic condition, which requires that the load is less than the capacity 
at each machine.  
 

However, this condition is not sufficient for multiclass open queuing 
networks [12]. Nonetheless, there are fluid limits models that allow the 
investigation of the stability question for such networks [8], [12]. These 
are continuous models obtained with help of the functional strong law of 
large numbers. 
 

A further model class can be derived within the framework of 
dynamical systems. By time averaging over a representative time period, it 
is possible to obtain a system of differential equations describing the 
behaviour of a queuing process as a continuous approximation (see, e.g., 
[15]). The advantage of this approach is that methods from the theory of 
dynamical systems can be used. E.g., stability criteria for a class of such 
systems were recently developed in [15-17]. Continuous models and some 
stability conditions will be presented later on. Here the term continuous 
denotes the continuous material flow. In the literature continuous flow 
models of production systems are often called hybrid models (cf. [4], [12] 
or [24]), meaning that the material flow is modelled as a continuous flow 
that is controlled by discrete actions. This discrete control is typical for 
production systems. 

Logistic Processes  

Within this paper, we focus on logistic processes on shop floors. 
Production logistics in this sense encompasses planning, control and 
monitoring of manufacturing processes. Enterprises face the problem of 
reacting to dynamically changing market competition in order to deploy 
and establish high quality products with a reasonable price possibly in a 
very short time. Thus, production logistics covers the interdisciplinary task 
between production planning and control, engineering and strategic 
management. It takes care of the operational control of material and 
information flows to guarantee efficient and flexible production processes 
[12]. 
 

The main goal of production logistics is to design and organise 
production processes according to high utilisation, low inventory and 
work-in-process, short throughput times and high adherence to delivery 
dates. The first two aims are at operational level, whereas the two latter 
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aims are customer driven. It is obvious that these four aims are mutually 
contradictory; an enterprise has to find a trade-off between these goals and 
to position itself according to its own interpretation of their importance. 
 

The main tasks of production logistics can be derived from the main 
goals. The allocation of orders or jobs to resources comprises of getting (i) 
the right products or services (ii) at the right time (iii) in the right amount 
(iv) to the right place. In this section we will discuss how autonomous 
control can meet these demands in presence of high dynamics. 

Autonomy in Logistic Processes  

By autonomy of a logistic process we understand the capability of the 
process to determine how to react to given changes in the environment, be 
they fluctuations in demand or in required production rate, failures in some 
components or changes in the function required of the process. 
Mathematically speaking we model an autonomous process as an input-
output system that is regulated by its own feedback loop with a possibly 
dynamic feedback, i.e., a feedback capable of using the memory of the 
system to calculate the control input, see Fig. 1. 
 

 
Fig. 1. A feedback loop  

From an abstract point of view it may seem difficult to call a system 
with inputs autonomous, since in general an input can be used to regulate a 
system from the outside. The distinction arises through the classification of 
inputs into inputs directly aimed at low-level control and others. We will 
call those systems autonomous that receive only inputs in terms of material 
and information, that needs to be processed, as well as high level demands. 
The decision on how these high level demands are met using the available 
resources rests with the control loop of the system. Clearly, the concepts 
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we are using here are not defined in mathematical terms but would depend 
on the interpretation of different objects within a concrete scenario1. 
 

As an example, consider a two machine two buffer system: Assume that 
due to customer demand a certain part has to be processed within the 
system. In the conventional approach a central controlling entity decides 
based on global information on which buffer-machine system the part is 
processed. In contrast autonomous control would enable the part to choose 
the buffer-machine system autonomously based on local information the 
part actually has access to. 

Mathematical Modelling of Logistic Processes  

There are fundamental discrepancies in the interpretation of what 
constitutes a model depending on different fields of research. In this paper 
we will take a modest mathematical point of view. We wish to understand 
the dynamics of logistic processes, that is, the laws by which certain 
logistic objects or quantities evolve in time. Here logistic objects may be 
parts in a factory, containers in a transport network or similar things. A 
model will therefore mostly consist of a set of equations for the time 
behaviour of a process. These models can be analysed to derive certain 
global properties of the system or simulated to obtain predictions for 
specific cases. 
 

The aim of deriving such models is to be able to analyse the behaviour 
from a qualitative point of view and also to provide predictive models, that 
is models that are accurate enough to provide good estimates of what is 
happening in the real process. Based on such a model, control or 
optimisation strategies may be derived. 
 

Due to the discrete nature of many logistic processes, the earliest models 
of such processes were in terms of discrete systems with an emphasis on 
the stochastic nature of the processes, arrival processes and other factors. 

                                                        
1 We note that the usage of the word ‘autonomy’ in this paper does not correspond 

to terminology that is widely used within mathematical systems theory. Here a 
system is either called autonomous if the laws governing the evolution of the 
system do not explicitly depend on time [32], or within the framework of 
behavioural systems, a system is called autonomous, if the behaviours of the 
system are not parameterised by inputs [26]. 
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We describe such models in the ensuing Section 3.1. In this approach 
processes are modelled by a number of servers with a processing rate. 
Each server has one or several queues to which possibly different types of 
customers arrive. The customers wait in these queues until they are served 
and after completion of the particular task they go on to the next server or 
leave the network. Concrete examples where such a modelling approach 
can be used are job shops where individual machines are interpreted as 
servers and customers are the parts that have to be processed. In the later 
sections we present continuous models in which parts and also production 
stage are not modelled as discrete variables. 

Discrete Models and Fluid Approximations  

Let J be the number of single machines denoted by index i=1,…,J. There 
are K classes of parts being processed. Each class k=1,…,K has its own 
exogenous arrival process with interarrival times tk(n), n=1,2,… with 
tk(n)=∞ for all n for some class k meaning that there are no external 
arrivals for this class.  
Parts of class k require service at machine s(k) and their service times are 
Tk(n), n=1,2,… . After being processed at station s(k) a class k part 
becomes a part of class l with probability Pkl or exits the network with 
probability 1-Σl Pkl, independent of all previous history, where P=(Pkl) is a 
substochastic matrix which is called routing matrix. Such a network is 
called an open multiclass queuing network, or briefly multiclass network. 
In case there is only one class with exogenous arrivals and the entries of 
the routing matrix satisfy Pk,k+1=1, for k=1,…K-1 and zero otherwise, then 
the multiclass network is called a re-entrant line, see Fig. 2. 
 

 
Fig. 2. A seven buffer five machine re-entrant line  

Such models have been considered by many authors, see e.g. [14]. The 
fluid limit models for multiclass networks and re-entrant lines were 
considered by, e.g., [13], [14], where the stability question is discussed and 
stability criteria via fluid models are obtained. 
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Within this modelling framework autonomous control can be introduced 

as follows. If the transition probabilities Pkl are dependent on the current 
buffer level of classes, this dependence can reflect the ability of parts to 
decide where to go to. Furthermore, the distribution of Tk  can also depend 
on the state of the queues; this reflects the ability of machines to change 
their own processing rate. Finally, servers may be able to decide in which 
order to process the waiting parts on the base of their buffer levels, i.e., the 
serving discipline is changing with time. Stability investigation and fluid 
models have yet to be developed for such re-entrant lines with autonomous 
control. 

Continuous Models: Partial Differential Equations 

We now describe a modelling approach based on partial differential 
equations. We introduce the variable x taking values in [0,1] which 
signifies the completion stage within a certain production process, see [4]. 
So material at the stage x=0 stands for raw material, while the material has 
reached stage x=1 when production process is completed. In this approach 
we are interested in the density function ρ(x,t) which denotes the amount 
of material that has reached completion stage x at time t. The approach is 
now to write down a partial differential equation for ρ. The first of the 
following equations represents conservation of mass, while the second is 
an equation for the local velocity within the production system, cf. [3]. 
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The advantages of this modelling approach lie in the relative ease with 

which model based simulations can be performed. For logistic processes 
with a large number of production stages it is also plausible to justify the 
transition from a finite number of production stages to a continuum. 
However, the approach does not lend itself easily to the modelling of 
autonomy because it is not obvious how to incorporate the behaviour of 
autonomous parts in the PDE. For instance one of the problems occurring 
is that for autonomous parts there may not be an ordered set of stages that 
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has to be completed, so that it does not really seem appropriate to model 
completion by a variable taking values in [0,1]. While this does not mean 
that the approach is not suitable for modelling autonomous processes, the 
derivation of such models is an open problem. 

Continuous Models: Ordinary Differential Equations  

In this section we first consider a single autonomous machine that can be 
modelled in a continuous modelling framework. Then we will show how 
such machines can be combined in a logistic network. 

A Single Machine  

Let x =(x1,…,xn) be the vector representing the state of a machine at time t 
and let u=(u1,…,uk) be the vector of inputs representing both external 
disturbances and inputs from other machines, see Fig. 3. The evolution of 
the state x with time t is described by a differential equation 

 

),( uxf
dt
dx

=
 

with initial condition 
0)0( xx = . 

 

 
Fig. 3. A single machine  

The decision rules of the machine are included in the function f. The 
input u accounts also for the decisions of the processed parts. Stability 
properties of such a nonlinear system can be described in terms of input-
to-state stability (ISS), see [31].  

A Production Network  

Consider a shop floor with several, that is m machines. To each of these 
we associate its state vector denoted by xi=(x1,…,xn)∈Rn, i=1…,m, and 
denote the total state of the network by x=(x1,...,xm) ∈Rnm. Let us combine 
these machines in a network, see Fig. 4. This network may be represented 
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as a directed graph, where the nodes are individual machines and edges 
describe an influence of the state of one machine on the state of another 
machine. 
 
 

 
Fig. 4. A network of machines with mutual influences represented as a directed 
graph 

 
The notion of ISS incorporates a measure of influence of the magnitude 

of the input to the magnitude of state, called nonlinear gain. A nonlinear 
gain γij from machine xi to machine xj is a strictly increasing continuous 
function with γij(0)=0 [31]. These gains can be gathered into a matrix, 
setting γii ≡ 0, which is a weighted adjacency matrix of the graph 
representation of the production network. Based on this a stability 
condition can be derived. 

 
The dynamical behaviour of this network is given by a system of 

differential equations 
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Modelling Autonomy in Logistic Processes  

As we have seen in the brief discussions of the previous sections it is not 
obvious how to include the concept of autonomy in the mathematical 
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models, depending on the modelling approach. In general existing models 
aim for a global understanding of the system and are suitable for the 
derivation of global control strategies. The implementation of such 
strategies may be unfeasible due to the size of the network, problems in 
making information available globally within a network and the like. This 
is the intrinsic motivation for studying autonomous control processes. 
Autonomy of processes suggests to model each process individually and to 
derive a model for the overall systems by coupling the autonomous 
components. Such an approach has been studied in the area of 
decentralised control, which we will now briefly discuss. 
 

In the field of control theory decentralised control has been actively 
investigated starting in the early 80s of the last century, see [30, 33] for an 
account and an introduction to the available results. The basic paradigm of 
decentralised control is that in contrast to the situation depicted in Fig. 1, a 
system is to be controlled by several controllers each of which only has 
access to a subset of the measured variables and to the control inputs to 
perform its task. This raises the question under which conditions a global 
control goal can be reached via the implementation of several local 
controllers. Especially for linear systems several results have been 
obtained that characterise stabilisability and optimisation of systems in 
which only an approach using decentralised strategies is possible, see [30, 
33]. For nonlinear systems however, many basic questions remain 
unsolved. 
 

From a certain point of view the problem of designing logistic processes 
with several autonomous components can be viewed as a variant of the 
problems treated in the field of decentralised control. Also in the logistic 
context the goal is to achieve certain tasks by the actions of several 
independent processes, each of which has limited access to the 
information. One of the fundamental difficulties in this approach is that 
very often logistic processes are governed by nonlinear laws. In other 
cases, one wishes to introduce nonlinearities to achieve certain control 
goals. In this area many mathematical problems are still unsolved. 
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Autonomous Control and its Effects on the Dynamics of 
Logistic Processes  

Here we give some examples, how autonomous control can be introduced 
into the models discussed above and we consider how it affects the 
solutions of these models. 
 

First consider the re-entrant line discussed above. As we have noted 
there, the possibility to choose where to go to be served for the parts can 
be described in terms of the transition probabilities Pij, making them 
dependent on the current situation, e.g., on the queue lengths. From the 
other side, if the machines are able to increase their processing rate when 
their queues are long or to decrease it once the queues become short, the 
service times Tk(n) become also functions of the queue lengths. 
Appropriately chosen rules of the autonomous control may improve the 
dynamics of the production line in the sense that it becomes more efficient 
and robust. The resources of idling machines can be utilised. The parts 
automatically go to an idling machine, i.e., one with an empty queue, if the 
others are busy, i.e., have longer queues. In case of failure of a machine the 
parts route themselves to other machines. The ability to change service 
rates may help to avoid bottlenecks. These are potential advantages of an 
autonomous control. However the rules of an autonomous control should 
be chosen carefully. There are examples (see [8]) of networks satisfying 
the usual traffic condition that the nominal load of the whole network is 
less then one, but that are nonetheless unstable, i.e., the queues grow 
unboundedly. 

An Illustrative Example  

Let us consider a couple of simple deterministic scenarios to demonstrate 
what a continuous model looks like in case of autonomous control. We 
consider a two machine production network. In this network there are two 
types of parts arriving at rates ai, i=1,2, to receive service at the two 
different machines. The first machine is designed to process the first type 
of parts at rate b11, however, it is able to process parts of the second type at 
a reduced rate b12<b11. Similarly, for the second machine we have the two 
processing rates b22>b21, for serving the second and the first type, 
respectively. If there is no control of the particle routing, parts of each type 
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are always served at the machine designed for their type, i.e., a part of type 
i goes always to the i-th machine. This situation we will call Scenario 1. 
 

In the second scenario the parts are able to decide by themselves at what 
machine they want to be serviced. They use certain decision rules that 
form the autonomous control and that have to be defined in advance. For 
example, a part might choose the machine with the shortest queue. Here 
we will use the following decision rule: A part of type i is routed to the 
machine j≠i only if the queue in front of machine j is empty and at the 
same time the queue in front of machine i is positive. Otherwise, it chooses 
the machine i. In case of ai>bii, i=1,2, both queues eventually become 
positive and each part of type i goes to the i-th machine. This case is not 
interesting for us. The situation is similar if ai<bii, i=1,2. An interesting 
setup is a1<b11, and a2>b22. In this case the first machine, which would idle 
periodically in the first scenario, every now and then receives parts of the 
second type. Hence the total throughput should be not less than in the first 
scenario. 
 

We consider also the following Scenario 3, but with a different 
autonomous control. The parts first arrive at a common buffer. Then, when 
the i-th machine completes service, it orders a part of type i from the 
buffer. If there are no parts of type i, it orders a part of the other type. One 
can say that in this scenario the machines are autonomously controlled. 
The machines decide which type of part to process next. One way to 
compare these three scenarios is via discrete event simulation, which we 
do before we turn to continuous models. 

Discrete-Event Simulation  

It is clear that the interesting case is a1<b11 and a2>b22. To perform the 
simulation we normalise the maximum arrival rate of the parts of the 
second type to be one and set a1=1/24, b11=b22=1/16, b12=b21=1/20. The 
arrival rate of the second type is varied between 1/16<a2<1. The 
simulation result of a time period of 500 time units is presented in Figure 
5, where the total amount of parts processed by both servers is plotted. 
Dashed, solid, and dotted lines correspond to Scenarios 1, 2, and 3, 
respectively. In the first scenario there are no decision rules, and hence the 
total throughput depends only on the processing rates, but not on the 
arrival rates. The second scenario is more efficient than the first one for 
most choices of arrival rate a2. As expected, the third scenario has an even 
higher throughput than the first two. For longer interarrival times 1/a2 of 
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parts of the second type all three graphs coincide. This is clear, since in 
this case the second machine can serve all arriving parts of the second 
type. 
 

 
Fig. 5. Total throughput depending on the arrival rate of parts of second type 

The Continuous Model  

Let xi(t), yi(t) denote the number of parts of the first and second type, 
respectively, waiting in buffer i. Denote by 0≤pi(t)≤1 the fraction of parts 
of type i that are routed to machine 1 at time t. The evolution of these state 
variables can be described by ordinary differential equations as 
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see [15]. The processing times of the machines are not constant but depend 
on the mixture of served parts, i.e., their fractions, which may change over 
time due to autonomous control of the parts. Moreover the processing rates 
are discontinuous functions of time and their expressions depend on the 
situation at the queues. If both queues are nonempty then 
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(see [15] for details). If the first buffer is empty, x1(t)+y1(t)=0, i.e., 
x1(t)=y1(t)=0, it holds that 
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The rules of autonomous control are encoded in the functions p1 and p2, 

which are in general functions of t, x1, x1, y1, y2 and, vice versa, given the 
rules of an autonomous control, the fractions p1, p2 can be calculated. For 
the Scenarios 2 and 3 the corresponding expressions can be found in [15]. 
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Like the processing rates, so are their expressions different for different 
situations at the queues. Obviously, if both queues are non-empty at time t, 
then 

 
0)(and1)( 21 == tptp  

 
hold. For x1(t)+y1(t)=0, x2(t)+y2(t)>0 one can derive 
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The corresponding expressions in the other cases, also for the third 

scenario, can be found in [15]. We note that the autonomous control rules 
in these scenarios are assigned to the parts. One can also allow the 
machines to decide in which order to process the parts or how fast to 
process them. In the latter case the processing rates bij become functions of 
t, x1, x1, y1, y2. 
 

These simple examples illustrate how autonomous control can be 
defined, how it enters the equations and how it affects the dynamic 
behaviour of a logistic network. 

Conclusions  

We have classified possible models for autonomous logistic processes and 
discussed how an autonomous control enters these models and what its 
effects on the dynamics and stability of the processes are. An example 
illustrates the answers to these questions. We discussed the advantages of 
autonomous control and pointed out the related stability problem. 
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