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SEPARABLE LYAPUNOV FUNCTIONS

FOR MONOTONE SYSTEMS:

CONSTRUCTIONS AND LIMITATIONS

GUNTHER DIRR, HIROSHI ITO, ANDERS RANTZER, AND BJÖRN S. RÜFFER

Abstract. For monotone systems evolving on the positive orthant of Rn
+

two types of Lyapunov functions are considered: Sum- and max-separable

Lyapunov functions. One can be written as a sum, the other as a maximum of

functions of scalar arguments. Several constructive existence results for both
types are given. Notably, one construction provides a max-separable Lyapunov

function that is defined at least on an arbitrarily large compact set, based on

little more than the knowledge about one trajectory. Another construction
for a class of planar systems yields a global sum-separable Lyapunov function,

provided the right hand side satisfies a small-gain type condition. A number of

examples demonstrate these methods and shed light on the relation between
the shape of sublevel sets and the right hand side of the system equation.

Negative examples show that there are indeed globally asymptotically stable

systems that do not admit either type of Lyapunov function.

1. Introduction. In this paper we consider dynamical systems defined on
Rn+ := [0,∞)n via the differential equation

ẋ = f(x) (1)

with f : Rn+ → Rn locally Lipschitz continuous and f(0) = 0. Throughout the
paper we assume that the system is monotone, i.e., that the ordering of solutions
principle

x ≤ y =⇒ ϕ(t, x) ≤ ϕ(t, y)

holds for solutions ϕ for all initial conditions x, y ∈ Rn+ and all t ≥ 0 where both so-
lutions exist. Monotonicity and the equilibrium at the origin imply that system (1)
leaves Rn+ invariant in forward time. (For a monotone system with equilibrium in
x0, the set {y ∈ Rn : x0 ≤ y} must be positively invariant, so we might as well shift
coordinates to get x0 = 0.)

Monotone systems appear in a variety of real-world scenarios, such as chemical
reaction networks [9], gene expression [28] and general systems biology [41], as well
as traffic networks [7].

We are interested in the asymptotic stability of the origin and the characteriza-
tion of this asymptotic stability by means of a Lyapunov function V : Rn+ → R+,
i.e., a positive definite function that decreases along trajectories in a neighborhood
of the origin. If V is continuously differentiable then for points x 6= 0 a sufficient
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2 DIRR, ITO, RANTZER, AND RÜFFER

condition for this decrease is given by the condition

∇V (x)f(x) =
d

dt
V
(
ϕ(t, x)

)∣∣∣
t=0

< 0. (2)

The differentiability requirement can be weakened to locally Lipschitz continuity
by resorting to Dini derivatives [44] or to appropriate subgradient methods [6],
amounting essentially to require (2) to hold at all points of differentiability, cf.
Corollary 1.

Of particular interest to us is the case where V can be separated into n individual
functions of one scalar argument, either as

V (x) =
n∑

i=1

Vi(xi) (3)

or as
V (x) = max

i=1,...,n
Vi(xi). (4)

In the first case we call V a sum-separable Lyapunov function and in the latter a
max-separable Lyapunov function.

Separable Lyapunov functions have been used widely in the existing literature on
stability analysis of monotone systems, although usually they have not been named
“separable”. Recent examples include [7, Lemma 2] as well as [28, Theorem 2]. In
both results it is shown that the l1-distance is a sum-separable Lyapunov function
for the systems under consideration.

Our own interest stems from applications in nonlinear distributed control and
stability analysis of large-scale systems (e.g.[21, 20, 22, 23, 8, 36, 29, 30]). By way of
an example, separable Lyapunov functions appear in the construction of Lyapunov
functions for composite systems from Lyapunov functions for individual subsystems
as follows. In applications a composite system

ẏ = F (y), F : RN → RN (5)

may appear as an interconnection of n ≥ 2 subsystems,

ẏi = Fi(y1, . . . , yn),

with Fi : RN1 × . . . × RNn = RN → RNi , i = 1, . . . , n. It is usually assumed that
every such subsystem is endowed with a suitable Lyapunov function Vi : RNi → R+

that quantifies the subsystem’s stability with respect to input from other subsys-
tems, e.g., via

∇Vi(yi)Fi(y1, . . . , yn) ≤ −αi
(
Vi(yi)

)
+
∑

j 6=i
γij
(
Vj(yj)

)
(6)

for suitable positive definite scalar functions αi and non-negative and non-decreasing
scalar functions γij . More precisely, one could assume that every subsystem is input-
to-state stable (ISS) [39] with an ISS Lyapunov function Vi [42]. For this case it
was shown in [25, 8] that under suitable conditions V (x) = maxi σ

−1
i

(
Vi(xi)

)
is a

Lyapunov function for the composite system (5), where the functions σi are ap-
propriate scaling functions. Clearly, this composite Lyapunov function is of the
form (4).

However, when subsystems are allowed to satisfy relaxed stability assumptions,
e.g, they are only assumed to be integral input-to-state stable (iISS) [40], then it
was found that the same construction from [25, 8] is too restrictive and essentially
implies that the subsystems must all be ISS [22]. Instead, a construction based
on (3) has been used successfully at different occasions, e.g. in [21, 20, 22, 23].

Both of these constructions are related to monotone systems, as the respective
stability conditions for large-scale systems (6) can always be translated into a sta-
bility condition on a lower-dimensional, monotone comparison system [33, 36]. In
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 3

our example, the resulting lower dimensional system is of the form (1) with f given
by

f(x) =



−α1(x1) +

∑
j γ1j(xj)

...
−αn(xn) +

∑
j γnj(xj)


 (7)

and the ordering of solutions is guaranteed as long as the functions γij are non-
decreasing, see [36].

A natural question thus is: If Lyapunov functions of the form (3) can seem to
handle “more general” types of interconnections of stable subsystems, is the set of
monotone (comparison) systems admitting such a Lyapunov function bigger than
the class of systems only admitting a Lyapunov function of the form (4)?

A separate interest is to estimate the region of attraction of the origin for sys-
tem (1), provided the attraction is not global to begin with. An estimate of this
region for the monotone comparison system based on (7) can be translated to an
estimate of the region of attraction for the composite system (5).

In this paper, we give several constructions for local and global separable Lya-
punov functions. We discuss limitations of these Lyapunov functions for estimating
regions of attraction as well as the implications that the existence of either kind
of Lyapunov function has on the dynamics of the monotone, respectively, original
dynamics. In addition, we construct specific monotone systems that do admit one
type of global separable Lyapunov function but not the other or that do not admit
any global separable Lyapunov function.

This paper is organized as follows: In the next section we will introduce some
relevant notation and definitions related to monotone systems and Lyapunov sta-
bility.

In Section 3, we show constructions of sum- and max-separable Lyapunov func-
tions. Starting with local results(§ 3.1.1), we also provide a semi-global result
showing that on a compact domain one can always find a max-separable Lyapunov
function by using little more than the knowledge about one trajectory. However,
our construction may lead to discontinuous Lyapunov functions, as we detail in an
example. Under additional assumptions on the system, the same construction also
yields a global Lyapunov function(§ 3.1.2). In Section 3.1.3, we discuss limitations
that the existence of max-separable Lyapunov functions impose on the system dy-
namics in view of their sublevel sets. These limitations are growth conditions on
the vector field f . If f arises as a comparison system then these limitations can
be interpreted as fundamental restrictions on the stability classes of systems and
topologies of the large-scale interconnections.

Sum-separable Lyapunov functions are considered in Section 3.2. After present-
ing a local, linearization-based result in Section 3.2.1, we turn our attention to
planar systems, for which we provide a global construction in Section 3.2.2.

All constructions are supported by examples that demonstrate how the shape of
the sublevel sets is in correspondence with the sign-pattern of the right hand side
of the system dynamics.

Finally, in Section 4 we give examples of systems that do not admit separable
Lyapunov functions of one type but of the other, before we give a brief summary
in Section 5.

2. Preliminaries. In this section, we recall a number of system theoretic concepts
and formalize the statements given in the introduction.

2.1. Kamke-Müller conditions and monotonicity. We consider Rn equipped
with the component-wise partial order, which we denote by x ≤ y if xi ≤ yi for
all i, x < y if x ≤ y but x 6= y, and x � y if xi < yi for all i. Given a bounded
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4 DIRR, ITO, RANTZER, AND RÜFFER

set X ⊂ Rn, by supX we denote the smallest upper bound with respect to this
partial order, i.e., supX = (supx∈X x1, . . . , supx∈X xn). A map F : Rn → Rn is
monotone if x ≤ y implies F (x) ≤ F (y). For a partially ordered set A ⊂ Rn, we
define A+ := {a ∈ A : a ≥ 0}. Moreover, we denote the n-vector (1, . . . , 1) as well
as the n× n matrix whose entries are all equal to 1 both by 1.

In this work we consider systems of the form (1). The local Lipschitz continuity
assumption guarantees the local existence and uniqueness of solutions ϕ(t, x) on
some maximal open time interval containing 0. Where they exist, the solutions
satisfy ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) and ϕ(0, x) = x.

Throughout this paper we will assume that system (1) is monotone, i.e., x ≤ y
implies ϕ(t, x) ≤ ϕ(t, y) for all t ∈ R+. This holds if and only if f satisfies the
Kamke-Müller conditions1, cf. [27, 37],

x ≤ y and xi = yi =⇒ fi(x) ≤ fi(y). (8)

If the vector field f is continuously differentiable then this condition is equivalent
to the requirement that the off-diagonal entries of the Jacobian matrix Jf(x) are
nonnegative for every x—and in this case the system is called cooperative, cf. the
seminal works by Hirsch [12, 13, 14, 16, 15, 17], the textbook [37], as well as the
more recent review article [18].

2.2. Invariant sets. We define two sets where trajectories are non-increasing, re-
spectively, strictly decreasing in each component for system (1). These have been
termed decay sets [32] and are defined as

Ψ :=
{
x ∈ Rn+ : f(x) ≤ 0

}
and

Ω :=
{
x ∈ Rn+ : f(x)� 0

}
.

(9)

The following result is fundamental.

Lemma 2.1 ([36]). If the origin is attractive with respect to (1), then it is also
stable. In the region of attraction it holds that f(x) � 0 for x 6= 0 and that the sets
Ψ and Ω are non-empty in the sense that Ψ ∩ Sr 6= ∅ and Ω ∩ Sr 6= ∅ for every
r > 0 such that Sr := {x ∈ Rn+ : ‖x‖1 = r} is contained in the region of attraction.
Moreover, the sets Ψ and Ω are positively invariant.

2.3. Stability. The origin is asymptotically stable if it is attractive and stable in
the sense of Lyapunov. It is globally asymptotically stable if it is asymptotically
stable and its region of attraction is the entire Rn+.

In this paper we will frequently drop the explicit reference to the origin and just
talk about stability or attractivity. A subset B ⊆ Rn+ will be called a domain of
attraction if limt→∞ ϕ(t, x) = 0 holds for all x ∈ B.

2.4. Comparison functions. A function ρ : R+ → R+ is of class P and written
as ρ ∈ P if it is continuous and positive definite, i.e., ρ(t) ≥ 0 for all t ≥ 0 and
ρ(s) = 0 if and only if s = 0.

A class P function is of class K if it is strictly increasing. A class K function is
of class K∞ if it is unbounded.

Given ω ∈ K, the function ω	: R+ → R+ is defined as ω	(s) = sup{v ∈ R+ : s ≥
ω(v)}. By definition, ω	(s) = ∞ for s ≥ limτ→∞ ω(τ), and ω	(s) = ω−1(s)
elsewhere. A function ω ∈ K is extended to ω: R+ → R+ by ω(∞) := sups∈R+

ω(s).

1Functions satisfying (8) are also referred to as quasi-monotone nondecreasing or type K.
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 5

2.5. Lyapunov functions and their derivatives with respect to time. In
the literature Lyapunov functions are usually assumed to be at least differentiable,
if not smooth. For technical reasons, however, we consider a wider class of functions
in this paper.

Let D ⊆ Rn+ be an open neighborhood of the origin. Recall that a function
V : D ⊂ Rn → R+ is called lower-semicontinuous if

lim inf
y→x

V (y) ≥ V (x)

holds for all x ∈ D. A lower-semicontinuous function V : D → R+ is called a strict
Lyapunov function for (1), if it satisfies the following conditions:

1. There exist α1 and α2 ∈ K∞ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (10)

for all x ∈ D
2. V is strictly decreasing along trajectories of (1) starting from x ∈ D \ {0},

i.e., for all x ∈ D \ {0} and all τ > 0 such that ϕ(t, x) ∈ D for all t ∈ [0, τ ]
the function t 7→ V (ϕ(t, x)) is strictly decreasing on [0, τ ].

Note that condition (10) guarantees continuity of V at the origin. Furthermore,
when D is unbounded, (10) implies that V is radially unbounded, that is, V (x)→∞
for ‖x‖ → ∞.

Theorem 2.2. Let D ⊂ Rn+ be an open neighborhood of the origin and let V : D →
R+ be a Lyapunov function in the above sense. Moreover, let V satisfy additionally
one of the following assumptions:

1. V is continuous.
2. The contingent derivative V ∗ of V is negative definite, i.e., there exists a

continuous, positive definite function α3 : R+ → R+, s.t.

V ?(x) := lim inf
τ↘0,‖y‖→0

V (x+ τf(x) + τy)− V (x)

τ
≤ −α3(‖x‖) (11)

for all x ∈ D.

Then the origin is asymptotically stable for the monotone system (1).

Sketch of the proof. If V : D → R+ is continuous, the above statement is a standard
result from Lyapunov Theory [10, Theorem 3.2.7]. If V is only lower-semicon-
tinuous, [5, Theorem IX.2.1] implies that V is strictly decreasing along trajectories
and that the origin is attractive. Stability is a consequence of monotonicity and
attractivity and follows from Lemma 2.1.

Remark 1. In general, one has the following relation between the contingent de-
rivative V ∗ and the Dini derivative V̇ of V along trajectories of (1):

V ?(x) ≤ V̇ (x) := lim inf
h↘0

V (ϕ(t+ h, x))− V (x)

h
.

Therefore, V̇ (x) < 0 implies V ?(x) < 0, see, e.g., [43]. It is shown in [5, Theorem
IX.1.6] that (11) is a sufficient condition for V to be strictly decreasing along
trajectories of system (1).

Corollary 1. Let D ⊂ Rn+ be an open neighborhood of the origin, V : D → R+ a
locally Lipschitz continuous function and α3 : R+ → R+ be continuous and positive
definite such that

∇V (x)f(x) ≤ −α3(‖x‖) (12)

for all points x ∈ D, where V is differentiable. Then V is strictly decreasing along
trajectories of (1) emanating from x ∈ D\{0} and thus the origin is asymptotically
stable for system (1).
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6 DIRR, ITO, RANTZER, AND RÜFFER

Sketch of the proof. The claim follows from the characterization of Clarke’s gener-
alized gradient using Rademacher’s Theorem [6] and an application of [3, Theorem
2.1].

2.6. Sublevel sets. Given an open neighborhood D ⊆ Rn+ of the origin, l ∈ R+,
and a positive definite function V : D → R+, we define its sublevel sets

L(l) :=
{
x ∈ D : V (x) ≤ l

}
. (13)

In the case of unbounded D, the sets L(l) are bounded for every l > 0 if and only
if V is radially unbounded.

If for a given l > 0 the sublevel set L(l) is compactly embedded in D and V non-
increasing along trajectories of (1) then L(l) is positively invariant. If, moreover,
V satisfies the conditions of Theorem 2.2 then L(l) is contained in the domain of
attraction.

2.7. Input-to-state stability and integral input-to-state stability. A system
ẋ = g(x, u) with g : RN × RM → RN satisfying standard assumptions on local
existence and uniqueness of solutions is input-to-state stable from u to x (ISS), cf.
[38, 39], if there exists a smooth function V : RN → R+ satisfying (10) and functions
α, γ ∈ K∞ such that

∇V (x)f(x, u) ≤ −α(V (x)) + γ(‖u‖) (14)

for all x ∈ RN and all u ∈ RM .
The system is integral input-to-state stable (iISS), cf. [40], if V as above satis-

fies (10) and there exist functions α ∈ P, γ ∈ K∞ such that (14) holds. In fact, it
is known that ISS implies iISS (and proved in [40, 2]).

3. Constructions and limitations. Now we can detail several methods to con-
struct separable Lyapunov functions. The constructions will be demonstrated in
several examples based on the class of systems defined by

ẋ1 = −x1 + x1x2 (15)

ẋ2 = −2x2 − x22 + 2g(x1) + g(x1)2, (16)

where g is a class K function satisfying

g := lim
s→∞

g(s) < 1. (17)

System (15)–(16) is monotone, and the set Ω in (9) is computed as

Ω = {x ∈ R2
+ : g(x1) < x2 < 1}.

Clearly, this set Ω divides (0,∞)2 into two disjoint sets. It is shown, e.g., in
[1, 20, 21] that this fact together with (17) guarantees that the origin is globally
asymptotically stable for system (15)–(16). The basic argument is that the pos-
itively invariant set Ω must be reached in finite time from any initial condition,
which can be seen from geometric considerations.

3.1. Max-separable Lyapunov functions.

3.1.1. Local max-separable Lyapunov functions. We start with a local result: One
can always find a max-separable Lyapunov function in a neighborhood of the origin.

Theorem 3.1. Assume that f is continuously differentiable at the origin and that
Df(0) is Hurwitz. Then there exists a Lipschitz continuous max-separable Lyapunov
function for (1) in a neighborhood of the origin.
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 7

Proof. The Jacobian A = Df(0) is a Metzler matrix with negative spectral abscissa.

For a small ε > 0 the matrix Ã := A + ε1 is, by the continuity of the spectrum,
again Metzler and has a negative spectral abscissa, but all off-diagonal entries of A
are positive. By the Perron-Frobenius Theorem (see, e.g., [4]) there exists a right-

eigenvector σ � 0 of Ã such that Aσ � Ãσ = aσ � 0, where a < 0 is the spectral
abscissa of Ã. The function

V (x) := max
i
σ−1i xi (18)

is positive definite on Rn+. By construction V is Lipschitz continuous. Along tra-
jectories of the linearized system

ẋ = Ax

the function V is strictly decreasing, as we show next. First we note that by
definition of V we have x ≤ V (x)σ. Furthermore, at points of differentiability of

V we have that V (x) = σ−1i xi > 0 for some index i. Hence V̇ (x) = σ−1i e>i Ax ≤
σ−1i e>i AV (x)σ < σ−1i ae>i V (x)σ = aV (x) < 0. It follows that V is a Lyapunov
function in the sense of Corollary 1.

A standard linearization argument involving the Taylor series of f around 0
establishes that V is also a Lyapunov function for the nonlinear system in a neigh-
borhood of the origin.

The drawback of the previous result is of course that in general it is difficult to
tell a priori what the maximal sublevel set of V is, on which V̇ is negative definite.
This obstacle is overcome by our next construction:

One can always find a max-separable Lyapunov function on arbitrary compact,
positively invariant sets in the domain of attraction by exploiting essentially only
the knowledge about one trajectory. Related approaches of verifying stability and
robustness of monotone systems using a single trajectory only have also been pur-
sued in [34, 35].

Theorem 3.2. Let (1) be a monotone system so that the origin is asymptotically
stable. Suppose that the compact set X ⊂ Rn+ is positively invariant and that
ε1+supX is contained in the region of attraction of the origin for some ε > 0. Then
there exist strictly increasing, positive definite, and lower-semicontinuous functions
Vk : R+ → R+, for k = 1, . . . , n such that V (x) = max{V1(x1), . . . , Vn(xn)} is a
strict Lyapunov function on X which additionally satisfies condition 2 of Theorem
2.2. In particular, one has

V ∗(x) ≤ V̇ (x) ≤ −V (x).

Remark 2. If a compact set X is not positively invariant to begin with, then one
can consider instead the positively invariant set

Y :=
⋃

t≥0
ϕ(t,X).

Proof. Define x = supX + ε1 for a sufficiently small ε > 0 such that x is in the
region of attraction (which is an open set). Then, due to monotonicity of the system
we have for all x ∈ X that

0 ≤ max
k

ϕk(t, x) ≤ max
k

ϕk(t, x) −→ 0 as t→∞

where ϕk(t, x) denotes the kth component of ϕ(t, x). For x ∈ X define

Tk(xk) := max
{
τ : xk ≤ ϕk(t, x) for all t ∈ [0, τ ]

}

T (x) := max
{
τ : x ≤ ϕ(t, x) for all t ∈ [0, τ ]

}
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8 DIRR, ITO, RANTZER, AND RÜFFER

where xk and ϕk(t, x) denote the kth components of x and ϕ(t, x). From the
definition it is clear that the functions Tk and T are upper-semicontinuous, i.e.,
that

lim sup
y→x

T (y) ≤ T (x)

holds for all x ∈ X. Then T (x) = min{T1(x1), . . . , Tn(xn)}. It follows from com-
pactness of X and asymptotic stability of x = 0 that T (x) is finite for all x ∈ X
with x 6= 0. Moreover, for x 6= 0 and arbitrary ε > 0,

T (ϕ(ε, x)) = max
{
τ : ϕ(ε, x) ≤ ϕ(t, x) for all 0 ≤ t ≤ τ

}

= max
{
τ : ϕ(ε, x) ≤ ϕ(t, x) for all ε ≤ t ≤ τ

}

= max
{
τ : ϕ(ε, x) ≤ ϕ(t+ ε, x) for all 0 ≤ t ≤ τ − ε

}

≥ max
{
τ : x ≤ ϕ(t, x) for all 0 ≤ t ≤ τ − ε

}

= ε+ T (x)

The inequality is due to monotonicity of the dynamics. This shows that the map
t 7→ T (ϕ(t, x)) is a strictly increasing function of t. Note that the same reasoning
applies to the functions Tk as well. It follows that the functions

Vk(z) := e−Tk(z), k = 1, . . . , n

are strictly increasing in z, satisfy Vk(0) = 0, and are strictly decreasing along
trajectories. With

V (x) := max
{
V1(x1), . . . , Vn(xn)

}
= e−T (x)

we obtain a max-separable Lyapunov function, as desired. Note that again by
construction the functions Vk and V are lower-semicontinuous. For x 6= 0 the Dini
derivative V̇ is estimated as

V̇ (x) = lim inf
h↘0

V (ϕ(h, x))− V (x)

h

= lim inf
h↘0

e−T (ϕ(h,x)) − e−T (x)

h

≤ lim inf
h↘0

e−(h+T (x)) − e−T (x)

h

= lim inf
h↘0

e−T (x) e
−h − 1

h
= −e−T (x) = −V (x).

The remainder of the claim follows by Remark 1.

Corollary 2. If x � 0 is such that ϕ(t, x) → 0 as t → ∞, then for any y with
0� y � x there exists a max-separable Lyapunov function defined on the compact
and positively invariant set X :=

⋃
t≥0{x ∈ Rn+ : x ≤ ϕ(t, y)}.

The proof follows along the lines of the proof of Theorem 3.2 with a minor
modification: For points x ∈ X satisfying 0 � x � x, we have to use T (x) :=
inf{τ ≥ 0: x 6� ϕ(t, x) ∀t ≥ τ} = maxk Tk(x) with Tk(x) := inf{τ ≥ 0: xk ≥
ϕk(t, x) ∀t ≥ τ}. These definitions coincide with the original ones for 0� x� x.

The following example demonstrates the geometric reasoning behind the previous
theorem and corollary.

Example 1. Starting from the compact order interval [0, x0] a compact and pos-
itively invariant set X =

⋃
t≥0
{
x ∈ R2

+ : x ≤ ϕ(t, x0)
}

is computed numerically,

see Figure 1. For x0 = (4, 1.5) and ε = 1 we obtain x = (5.17, 2.5). The trajectory
ϕ(t, x) of (15)–(16) for t ∈ R+ is then used to compute the Lyapunov function V
as in the proof of Theorem 3.2. The reference trajectory ϕ(t, x), the set Ω, as well
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 9

as sublevel sets L(l) for several values of l > 0 (dashed lines) are shown in Figure 1
for

g(x1) =
16x1

25(1 + x1)
. (19)

The sublevel sets L(l), illustrated in Figure 1 as red dashed rectangles, are domains
of attraction, because these sets are bounded.

However, when V is considered as a function defined on all of R2
+, or at least on

the strip {x ∈ R2
+ : x2 ≤ x2}, then for large l > 0 the sublevel sets are unbounded

in the x1-direction and the dashed lines denoting their boundary are horizontal
(dash-dotted in the figure). The unboundedness of the x1-direction occurs when
l > 0 is chosen such that the sublevel set L(l) exceeds x2 = 1.

It is therefore only possible to extract finely grained information about the at-
traction rate of the origin in the neighborhood where the sublevel sets of V are
bounded.

x0

Ω

x

ϕ(t, x)

0 5 10
0

1

2

V (x
) =

e
−4
.1
5

V (x
) =

e
−2
.2

V (x
) =

e
−0
.6

V (x) = e−0.2

V (x) = e−0.1

x1

x
2

Figure 1. Sublevel sets of a max-separable Lyapunov function
constructed by Theorem 3.2 for (15)–(16) with g given by (19) in
Example 1.

The following example shows that in principle discontinuity of V in the construc-
tion of Theorem 3.2 can occur. While in general discontinuous Lyapunov functions
are undesirable for most applications, they have their use, e.g., in establishing weak
attraction, cf. [5, Chapter IX]. For the monotone systems considered here, they are
in fact enough to establish asymptotic stability, cf. Theorem 2.2.

The idea is pictured in Figure 2: If x moves downwards along the vertical line
at x1 = 2, the value of V (x) takes a jump when x2 crosses the value x̃2 for which
the x2-component of ϕ(t, x) remains constant for some open time interval (t1, t2).
However, such a phenomenon cannot occur for the class of monotone systems on
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10 DIRR, ITO, RANTZER, AND RÜFFER

R2
+ considered here: The trajectory depicted in the figure evolves initially in the

set Ω, as both components are strictly decreasing with time (e.g., at time t̃1 in
Figure 2), then at time t̃2 we must have d

dtϕ2(t̃2, x) = 0, so this point cannot be in

Ω, while at time t̃3 the trajectory evolves again in Ω. However, by Lemma 2.1 the
set Ω is positively invariant, contradicting the existence of a trajectory as shown in
Figure 2. Furthermore, it is known that both components of ϕ(t, x) must eventually
be decreasing, cf. [11].

Therefore, the following constructive example is given for a monotone system
evolving on R3

+. In this construction the reference solution ϕ(t) := ϕ(t, x) evolves

0 2 4 6 8 10

1

3

4

discont.

x

ϕ(t2, x)

ϕ(t1, x)

ϕ(t̃3, x) ∈ Ω

ϕ(t̃2, x) 6∈ Ω

ϕ(t̃1, x) ∈ Ω

x1

x
2

Figure 2. Sketch of the possibility of a discontinuity of the Lya-
punov function constructed in Theorem 3.2. Here the x2 compo-
nent of ϕ(t, x) is constant between times t1 and t2 > t1, so that
V (x), for x sliding down along the red dashed line, jumps from
e−t1 to e−t2 when the thin red line at x2 = 2 is crossed.

for a while in a plane parallel to the x1-x2-plane. More precisely, while the x3-
component of ϕ(t) is constant for a short time, the dynamics of the x1- and x2-
components obey the linear dynamics (20) to guarantee monotonicity of the overall
system.

Example 2. Consider the following vector field in R3
+:

f(x1, x2, x3) :=




−2x1 + x2
x1 − 2x2

−
(
ρ(x1) + ρ(x2)

)
x3




where ρ := R → R is a continuously differentiable function with the following
properties:

1. ρ(r) = c > 0 for r ≤ r1 and ρ(r) = 0 for r ≥ r2
2. ρ(r) ∈ (0, c) for r1 ≤ r ≤ r2
3. ρ monotonically decreasing, i.e., ρ′(r) ≤ 0.
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 11

The values of r1 > 0 and r2 > r1 will be fixed appropriately later. A cubic spline
interpolation based on the above conditions yields

ρ(r) =





0 if r < r1

−c 2r
3+6rr1r2−3r1r22+r32−3(r1+r2)r2

r31−3r21r2+3r1r22−r32
if r ∈ [r1, r2]

c for r > r2.

as one possible choice. Then one has

Jf(x, y, z) :=



−2 1 0
1 −2 0

−ρ′(x)z −ρ′(y)z −ρ(x)− ρ(y)




and thus ẋ = f(x) is monotone (because Jf has nonnegative off-diagonal entries,
cf. the discussion below (8)). Moreover, R3

+ is obviously positively invariant and
the origin is globally asymptotically stable. The last assertion follows easily from
the global asymptotic stability of the linear subsystem

ẋ1 = −2x1 + x2

ẋ2 = x1 − 2x2.
(20)

Now consider the compact set X := K × [0, 1] ⊂ R3
+, where K ⊂ R2 denotes the

compact subset bounded by the x-axis and the solution

ψ(t) =
5

2

(
e−t

(
1
1

)
+ e−3t

(
1
−1

))

of (20) which starts at (5, 0). Here, the value 5 does not play a special role; many
other choices would do the same job. Next, let us denote the maximum of the x2-
component of ψ(t) by y∗. For our particular initial condition we find y∗ = 5

3
√
3
< 1.

Then, according to Theorem 3.2, let us choose x̄ := (5, y∗, 1)+(1, 1, 1) = (6, y∗+1, 2)
as starting point for the reference solution ϕ(t). Since ẋ2 = x1−2x2 > 0 at (6, y∗+1)
the maximum of the x2-component of ϕ(t) will be greater than y∗+1. Let us denote

its maximum by y∗ > 0. In our particular case we find y∗ =
√
5(21

√
3+5)

3
2

135
√

3
√
3−1

≈ 2.15.

Now choose r2 > r1 > 0 such that

r1 < y∗ + 1 < r2 < y∗.

If finally c > 0 is sufficiently large, the x3-component of ϕ(t) will initially decrease
fast enough so that one can guarantee that the x3-component of ϕ(t) is less than
1 when ϕ(t) enters the region y ≥ r2, cf. Figure 3. Finally, along the x3-axis (for
some (x3 < 1) a discontinuity phenomenon for T occurs, which results from the
discontinuity of T3 as shown in Figure 4.

We stress that the discontinuity phenomenon is a non-local property, as for
sufficiently regular f in an arbitrarily small neighborhood one may always assume
that there is a Lipschitz-continuous max-separable Lyapunov function, as we have
seen in Theorem 3.1.

3.1.2. Global max-separable Lyapunov functions. In general, the reasoning of The-
orem 3.2 does not provide a global Lyapunov function for an arbitrary monotone
system with globally asymptotically stable origin, as we will see in the examples of
Section 4.1. However, the following result holds.

Corollary 3. Let (1) be a monotone system so that the origin is globally asymp-
totically stable. Suppose that there is a trajectory ϕ(t) ∈ Rn+ such that

• ϕ(t) is defined for all forward and backward times;
• limt→∞ ϕ(t) = 0 and limt→−∞ ϕk(t) =∞ for all k.
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12 DIRR, ITO, RANTZER, AND RÜFFER

0 0.2 0.4 0.6 0.8 1

1

3

4

5

6

t1 t2

r2

t

ϕ1(t)

ϕ2(t)

ϕ3(t)

Figure 3. The components of the reference trajectory ϕ(t) =
ϕ(t, x) as constructed in Example 2. The trajectories shown here

correspond to the numerical values x =
(
6, 5/(3

√
3), 2

)
, r1 = 1,

r2 = 2.1, and c = 1500. Clearly, while ϕ2(t) > r2 holds, i.e.,
between t1 and t2, the third component ϕ3(t) is constant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x3

T
3
(x

3
)

Figure 4. The discontinuity of T3(x3) = max
{
τ : x3 ≤

ϕ3(t, x) for all t ∈ [0, τ ]
}

as constructed in Example 2. The re-
sulting Lyapunov function V constructed as per Theorem 3.2 is
discontinuous.
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 13

Then there exists a max-separable Lyapunov function.

Proof. The proof is essentially the same as the construction given in the proof of
Theorem 3.2. First we let

Tk(xk) := max{τ : xk ≤ ϕk(t) for all t ∈ (−∞, τ ]}
T (x) := max{τ : x ≤ ϕ(t) for all t ∈ (−∞, τ ]}

for k = 1, . . . , n. Again T (x) = mink Tk(xk) and we define

V (x) := e−T (x) = max
k

e−Tk(xk) =: max
k

Vk(xk).

Observe that V (x) → ∞ as ‖x‖ → ∞. The remainder of the proof is the same as
for Theorem 3.2.

3.1.3. Limitations for planar systems. In this subsection we consider system (1)
with f : R2

+ → R2. Max-separable Lyapunov functions possess the following prop-
erty when their derivative is negative definite on R2

+.

Theorem 3.3. Suppose that there exists a non-decreasing continuous function
η : R+ → R+ such that the implication

η(x1) ≤ x2 ⇒ f1(x) ≥ 0 (21)

holds for all x ∈ R2
+. If there exist differentiable functions ρ1, ρ2 ∈ K such that

V : R2
+ → R+,

V (x) = max{ρ1(x1), ρ2(x2)} (22)

satisfies at all points x > 0 with ρ1(x1) 6= ρ2(x2),

∇V (x)f(x) < 0, (23)

then

lim
s→∞

ρ1(s) ≤ lim
s→∞

ρ2 ◦ η(s). (24)

In essence this theorem is a non-existence result for global max-separable Lya-
punov functions, cf. Figure 9: For certain right hand sides f satisfying (21), the
Lyapunov function V cannot be radially unbounded, because due to (24) the func-
tion ρ1 is bounded by the composition of a class K function with a bounded function
and thus must itself be bounded.

Proof. Let p = (x1, x2)T ∈ R2
+ \ {0} be such that

η(x1) ≤ x2. (25)

Then properties (21), (23) and ρ1, ρ2 ∈ K imply ρ1(x1) < ρ2(x2). Since the above
property holds for any p = (x1, x2)T ∈ R2

+ \ {0} satisfying (25), we have

ρ1(s) ≤ ρ2 ◦ η(s), ∀s ∈ R+.

Taking the limit of both sides in the above inequality for s tending to ∞, we arrive
at (24).

The preceding result has two immediate consequences.

Corollary 4. Under the assumptions of Theorem 3.3, if

lim
s→∞

η(s) <∞

holds then every sublevel set L(l) that contains a point x = (x1, x2) ∈ R2
+ with

x2 ≥ lims→∞ η(s) is unbounded.
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14 DIRR, ITO, RANTZER, AND RÜFFER

Proof. By virtue of Theorem 3.3, due to (22) and (24), the requirement

L(l) ∩
{
x ∈ R2

+ : x2 ≥ lim
s→∞

η(s)
}
6= ∅ (26)

yields lims→∞ ρ1(s) ≤ l and

V (x) ≥ l ⇒ V (x) = ρ2(x2).

Thus, property (26) implies that the sublevel set L(l) contains points (x1, x2) with
arbitrary x1 ∈ R+, i.e., L(l) is unbounded.

Corollary 5. Under the assumptions of Theorem 3.3, if a sublevel set L(l) of V
given by (22) is bounded then it holds that

ρ−12 (l) < η ◦ ρ−11 (l) <∞. (27)

Here it is actually sufficient to require ∇V (x)f(x) < 0 only for points x ∈ L(l),
as opposed to (23), where this is assumed also outside L(l).

Proof. The boundedness of L(l) implies l < lims→∞ ρi(s) for i = 1, 2. From ρi ∈ K
it follows that ρ−1i (l) is well-defined and satisfies 0 < ρ−1i (l) < ∞ for i = 1, 2. Let

p =
(
ρ−11 (l), ρ−12 (l)

)
. By definition, p ∈ L(l) ⊆ R2

+ and V (p) = ρ1(p1) = ρ2(p2) = l.

Property (23) together with (21) yields η(ρ−11 (l)) > ρ−12 (l). Hence, property (27)
follows from the monotonicity properties of the function η.

The unboundedness of the sublevel sets established in Corollary 5 implies that the
max-separable Lyapunov function (22) cannot ensure the boundedness of solutions
to (1) for all x(0) ∈ R2

+ if there exists a non-decreasing continuous function η : R+ →
R+ satisfying (21) and lims→∞ η(s) <∞.

Note that the existence of η : R+ → R+ satisfying (21) and lims→∞ η(s) < ∞
in Corollary 5 rules out the existence of a trajectory ϕ as in Corollary 3 that is
unbounded in all components in backward time.

Remark 3. For monotone systems, there is a way to estimate domains of attraction
without the use of sublevel sets of Lyapunov functions at all [34, 35, 31].

The reasoning is as follows: If there exists x0 ∈ Rn+ such that the solution ϕ(t, x0)
of (1) satisfies limt→∞ ϕ(t, x0) = 0, then from the monotonicity of (1) it follows
that the set

B(x0) := {x ∈ Rn+ : ∃t ∈ R+ such that x ≤ ϕ(t, x0)}
is a domain of attraction and positively invariant. Note that B(x0) does not have
to be a sublevel set of a max-separable Lyapunov function.

3.2. Sum-separable Lyapunov functions.

3.2.1. Local sum-separable Lyapunov functions. We start again with a local result.

Theorem 3.4. Assume that f is continuously differentiable at the origin and that
Df(0) is Hurwitz. Then there exists a sum-separable Lyapunov function in a neigh-
borhood of the origin.

Proof. Much of this proof is the same as for Theorem 3.1, so we only state the
relevant modifications. Denote again by A the Jacobian of f at the origin. If A is
irreducible then by the Perron-Frobenius Theorem A has a positive left eigenvector
λ� 0 such that λTA = aA with a < 0 the spectral abscissa of A.

The function V (x) := λTx is positive definite on Rn+, because all components
of λ are positive. Along trajectories of the linearized system ẋ = Ax we compute
d
dtV (x(t)) = λTAx = aλTx = aV (x) < 0 whenever x > 0. The case when A is

reducible can again be handled by considering instead Ã = A+ ε1 for a sufficiently
small ε > 0. The remaining arguments are the same in the proof of Theorem 3.1.
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SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 15

3.2.2. Global sum-separable Lyapunov functions. It is not yet known whether sum-
separable Lyapunov functions can be generated directly from a single trajectory.
However, it is possible to analytically construct sum-separable Lyapunov functions
based on information little more than the positively invariant set Ω. In this section
we restrict our attention again to the planar case.

We consider the monotone system

ẋ = f(x) :=

(
−α1(x1) + σ1(x2)
−α2(x2) + σ2(x1)

)
(28)

with αi ∈ K and σi ∈ K for i = 1, 2. The monotonicity of (28) is clear since (8)
holds.

Remark 4. System (28) can be interpreted as a feedback interconnection of two
systems, ẋ1 = f1(x1, x2) and ẋ2 = f2(x1, x2). Both of these systems are integral
input-to-state stable with respect to the state of the other system. Moreover,
system i is ISS with respect to the state of the other system [42], if and only if
lims→∞ σi(s) ≤ lims→∞ αi(s).

As demonstrated in [1], unless lims→∞ σi(s) ≤ lims→∞ αi(s) holds for both
i = 1, 2, the existence of Ω dividing (0,∞)2 into two disjoint sets is not sufficient
for guaranteeing global asymptotic stability of (28)2. For ensuring the asymptotic
stability in the global sense, it is sufficient that the “width” of Ω does not shrink
to zero in the radial direction. In fact, we can verify the following by making use
of the argument in [23], where c > 1 prevents Ω from shrinking to zero.

Theorem 3.5. Suppose that there exists c > 1 such that

α	1 ◦ cσ1 ◦ α	2 ◦ cσ2(s) ≤ s, (29)

holds for all s ∈ R+. Choose ψ ∈ R+ such that

ψ = 0 if c > 2

ψ−
ψ
ψ+1 <

c

ψ + 1
≤ 1 otherwise.

(30)

Then the continuously differentiable function V : R2
+ → R+ defined by

V (x) = ρ1(x1) + ρ2(x2) (31)

ρi(s) =

∫ s

0

λi(τ)dτ, i = 1, 2 (32)

λi(s) = αi(s)
ψσ3−i(s)

ψ+1, i = 1, 2 (33)

is a Lyapunov function.

Remark 5. Condition (29) is called a small-gain condition [1, 21, 20].

Proof. Let τ > 1. For λi given in (33), we have

λi(xi){−αi(xi) + σi(x3−i)} ≤

−
(

1− 1

τ

)
αi(xi)

ψ+1σ3−i(xi)
ψ+1

+ τψσi(x3−i)
ψ+1[σ3−i ◦ α	i ◦ τσi(x3−i)]ψ+1

for i = 1, 2. Define

Qi(xi) :=

(
1− 1

τ

)
αi(xi)

ψ+1 − τψ[σi ◦ α	3−i ◦ τσ3−i(xi)]ψ+1

2The existence of Ω dividing (0,∞)2 into two disjoint sets is sufficient if we are only interested
in compact domains of attraction.
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16 DIRR, ITO, RANTZER, AND RÜFFER

for i = 1, 2. If

1 < τ ≤ c (34)

holds, by virtue of (29) we have

Qi(xi) ≥
(

1− 1

τ

)
αi(xi)

ψ+1 − τψ
[

1

c
αi(xi)

]ψ+1

.

Thus, if

(τ
c

)ψ+1

< τ − 1 (35)

is satisfied, there exists ε > 0 such that

Qi(xi) ≥ ε[αi(xi)]ψ+1.

Since we have

2∑

i=1

λi(xi){−αi(xi) + σi(x3−i)} = −
2∑

i=1

σ3−i(xi)
ψ+1Qi(xi),

property (23) is achieved for all x ∈ R2
+ if ψ, τ ≥ 0 satisfy (34) and (35). Finally,

we prove that there exists τ > 0 such that (34) and (35) are satisfied if ψ satisfies
(30). First, suppose that ψ = 0. Let

τ =
c

2
+ 1.

Then c > 2 guarantees (34). We also have

Z := τ − 1− τ

c
=

(c+ 1)(c− 2)

2c
.

From c > 2 it follows Z > 0 which is identical to (35). Next, suppose that ψ > 0.
Let

τ = c

(
c

ψ + 1

)1
ψ

. (36)

Then property

1 ≥ c

ψ + 1

implied by (30) yields τ ≤ c. Since (30) guarantees

(
c

ψ + 1

)ψ+1
ψ

> ψ−1, (37)

from (36) we obtain

τ = (ψ + 1)

(
c

ψ + 1

)1
ψ+1

>
ψ + 1

ψ
> 1.

Hence, we arrive at (34). Using (36) we have

Z := τ − 1−
(τ
c

)ψ+1

= ψ

(
c

ψ + 1

)1
ψ+1

− 1.

Property (37) yields Z > 0 which is identical to (35). This completes the proof.
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By construction V is radially unbounded, so the sublevel sets L(l) defined in
(13) are positively invariant. Clearly, the sum-separable Lyapunov function V
establishes global asymptotic stability of the origin for system (28).

We stress that there always exists ψ ≥ 0 satisfying (30). In fact, c ≤ ψ + 1 is
met for a sufficiently large ψ ≥ 0, and we have

lim
ψ→∞

(ψ + 1)ψ−
ψ
ψ+1 = 1.

Due to c > 1 and continuity, the requirement (30) holds whenever ψ ≥ 0 is suffi-
ciently large. The smallest ψ satisfying (30) for given c > 1 is shown in Figure 7.

Example 3. Consider the monotone system

v̇1 = −b̂(v1) + v2 (38)

v̇2 = −2v2 − v22 + 2ĝ(v1) + ĝ(v1)2 (39)

defined for v = (v1, v2) ∈ R2
+, where a ≥ 1 and

b(s) =
as

1 + as
, b̂(s) = b

(
es − 1

a

)
, s ∈ R+

ĝ(s) = g

(
es − 1

a

)
, s ∈ R+.

Applying the diffeomorphisms v1 = log(1 + ax1) and v2 = x2 from R+ to R+ to
(15) and (16) gives

v̇1 = − ax1
1 + ax1

+
ax1

1 + ax1
x2 ≤ −b̂(v1) + v2

and (39). Thus, due to the standard argument of the comparison principle (e.g.
[26, 27]), a domain of attraction of (38)–(39) (in x-coordinates) is a domain of
attraction of the original system (15)–(16).

In order to apply Theorem 3.5 for constructing a Lyapunov function V (v), sup-
pose that g is given as (19) and let a = 1. Then the functions

α1(s) = b̂(s), σ1(s) = s

α2(s) = 2s+ s2, σ2(s) = 2ĝ(s) + ĝ(s)2

satisfy (29) with c ∈ (1, 5/4]. Equations (33) and (30) with c = 5/4 lead to

λ1(s) = b̂(s)17(2ĝ(s) + ĝ(s)2)18 and (40)

λ2(s) = (2s+ s2)
17
s18. (41)

From (31) a Lyapunov function V is obtained as

V (x) = ρ1(v1) + ρ2(v2) = ρ1(log(1 + x1)) + ρ2(x2) (42)

with (32). Sublevel sets L(l) of (42) are plotted for several l > 0 in Figure 5, where

Ωv = {x ∈ R2
+ : αi(vi) > σi(v3−i), i = 1, 2}.

All sublevel sets are compact and thus domains of attractions, although some parts
of large x1 exceed the frame of Figure 5. In fact, both ρ1 and ρ2 generated from
(40) and (41) via (32) are radially unbounded, and so is V . This implies that for an
arbitrarily large x ∈ R2

+, there always exists l > 0 such that x ∈ L(l). Therefore,
the Lyapunov function (42) establishes global asymptotic stability of x = 0.

The sublevel sets obtained from the sum-separable Lyapunov function constructed
in the previous example still show almost ‘sharp’ upper right corners. This shape
is due to the diameter of the the set Ω, as the following modification of Example 3
shows:
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Ω
Ωv

0 2 4 6 8 10
0

0.5

V (x
) =

9.6
5 · 1

0
−7

V (x
) =

1.6
0 · 1

0
−3

V (x
) =

5.7
6 · 1

0
−2

V (x
) =

5.1
3 · 1

0
−1

V (x
) =

2.2
6

V (x
) =

6.6
5

V (x
) =

1.5
· 10

1

V (x
) =

2.9
1 · 1

0
1

V (x
) =

4.9
4 · 1

0
1

V (x) = 3.11 · 106

V (x) = 8.98 · 1013

V (x) = 2.66 · 1019

V (x) = 5.94 · 1023

x1

x
2

Figure 5. Sublevel sets of a sum-separable Lyapunov function for
(15)–(16) and (19) in Example 3 via Theorem 3.5.

Example 4. The sublevel sets become more rounded and well-balanced in both
x1 and x2 directions if Ω (or Ωv) is wider. To see this, we replace (19) by

g(x1) =
6x1

25(1 + x1)
. (43)

Property (29) is satisfied with c =
√

25/6. Then from ψ = 0 in (33) satisfying (30)
it follows that

λ1(s) = 2ĝ(s) + ĝ(s)2 and (44)

λ2(s) = s. (45)

For (43) sublevel sets L(l) are plotted in Figure 6. It may illustrate better than
Figure 5 that there always exists l > 0 such that L(l) is large enough to contain
any given x ∈ R2

+.

Note that the choice of the pair (ρ1, ρ2) in (31) establishing global asymptotic
stability of the origin for system (28) is not unique.

Corollary 6. Suppose that there exist ci > 0, i = 1, 2, and k > 0 such that

σ2(s)k ≤ c1α1(s), ∀s ∈ R+ (46)

c2σ1(s) ≤ α2(s)k, ∀s ∈ R+ (47)

c1 < c2. (48)

Then there exists a constant c > 1 satisfying (29).

Remark 6. The existence of c1, c2, k > 0 satisfying (46)–(48) allows us to replace
(33) by another formula for constructing a Lyapunov function via (31)–(32). In
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Figure 6. Sublevel sets of a sum-separable Lyapunov function for
(15)–(16) and (43) in Example 4 via Theorem 3.5.

fact, according to [21], in the case of k ≥ 1, we can verify that the pair

λ1 = c1

(
c2
c1

) k+1
k+2

, λ2(s) = kα2(s)k−1 (49)

satisfies (23) for all x ∈ R2
+. For k < 1, the above pair is replaced by

λ1(s) =
1

k
α1(s)

1−k
k , λ2 = c

− 1
k

1

(
c1
c2

) 1
1+2k

(50)

Again, the function V obtained with (49) and (50) is positive definite and radially
unbounded.

The case that σi ≡ 0 for i = 1 or i = 2 in (28) can be dealt with by a robustness
argument, replacing the σi by a very “small” function. A more explicit case is
considered next, where only σ2 is zero.

ẋ = f(x) :=

(
−α1(x1) + σ1(x2)

−α2(x2)

)
(51)

with α1, α2 positive definite and σ1 ∈ K.
This scenario can be interpreted as a series connection of two systems. In fact,

this very monotone system is a prototype that often arises in the stability analysis
of coupled systems via comparison methods.

If α1 and α2 are only assumed to be positive definite then depending on the
function σ1 the origin is not always globally asymptotically stable for this type
of system. Hence, additional assumptions have to be imposed to allow for the
construction of a sum-separable Lyapunov function. The following result follows
from a result in [19] which goes beyond Theorem 3.5.
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1.1 1.2 1.3 1.4 1.5
0

50

100

150

200

250

300

c

ψ

Figure 7. Smallest exponent ψ in a sum-separable Lyapunov
function given by Theorem 3.5.

Corollary 7 ([19]). Let α1 and α2 in (28) be positive definite. Assume there exists
k ≥ 1 such that

∫ ∞

1

α1(s)k−1ds =∞ and

∫ 1

0

σ1(s)k

α2(s)
ds <∞

hold. Then V : R2
+ → R+ defined by V (x) = ρ1(x1)+ρ2(x2) with ρi(s) :=

∫ s
0
λi(τ)dτ

and functions λi given by

λ1(s) :=
1

2
α1(s)k−1 and (52)

λ2(s) :=





σ1(s)
k

α2(s)
if s ∈ [0, 1)

max
w∈[1,s]

σ1(w)k

α2(w) if s > 1

(53)

is a differentiable Lyapunov function.

3.2.3. Discussion. Although sum-separable Lyapunov are better than max-separable
ones in being able to yield domains of attraction of unlimited size theoretically, the
max-separable Lyapunov functions still have some advantages.

In the examples we have seen that the max-separable constructions do not re-
quire any pre-process of computing αi and σi from the original system equation. In
addition, the functions ρi for the max-separable Lyapunov function (22) are inde-
pendent of αi and σi as long as the sign of fi(x) remains unchanged. For instance,
the max-separable Lyapunov function V obtained above for the system (15)–(16)
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also has negative time-derivative along solutions of monotone systems such as

ẋ1 = −x51 + x51x2 (54)

ẋ2 = (1 + x22)(−x2 + g(x1)). (55)

On the other hand, the sum-separable Lyapunov function (42) obtained in Exam-
ple 3 does not have negative time-derivative along solutions of system (54)–(55).

Another benefit of using max-separable Lyapunov functions is their handiness.
The exponent ψ appearing in the sum-separable Lyapunov function can be quite
large, as we saw for system (40)–(41), cf. Figure 7. In practice, the large exponent
causes serious trouble in controller design based on Lyapunov functions when it
results in very high “order” nonlinearities in controllers.

In addition, when x2 is allowed to be larger than unity, the sublevel sets obtained
via the sum-separable Lyapunov function for system (15)–(16) are extremely large
in the x1-direction, even though they are guaranteed to remain bounded.

The necessity of high order nonlinearities for sum-separable Lyapunov functions
has not been proven. Nevertheless, except for the special case of (46)–(48), we have
not yet found ways to reduce the order of the nonlinearities when c > 1 in (29) needs
to be close to unity. When compared with the max-separable Lyapunov functions,
order reduction is naturally harder since the transformation κ(V (x)) by a class K
function κ generally destroys sum-separability, while it preserves max-separability.

4. Counterexamples. The following two examples demonstrate that compact-
ness of the state-space is indeed crucial for the existence of separable Lyapunov
functions. In both cases the origin is globally asymptotically stable and the system
evolves in R2

+.

4.1. Example of a system with a sum-separable Lyapunov function that
does not exhibit a max-separable Lyapunov function. Consider the system

d

dt

(
x1
x2

)
=

(− x1

1+x1
+ x2

−x2

)
=: f(x1, x2). (56)

The right-hand side is locally Lipschitz continuous, satisfies f(0, 0) = 0, as well as
the Kamke-Müller conditions (8). Hence (56) defines a monotone system on R2

+.
Figure 8 shows how the state space is divided into two regions,

Rupper =
{
x ∈ R2

+ : x1 > 0, x2 >
x1

1 + x1

}

Rlower =
{
x ∈ R2

+ : x1 > 0, 0 < x2 <
x1

1 + x1

}
= Ω,

separated by the dashed line. In the upper region trajectories increase in the first
component, while they decrease in the second component. Eventually, they enter
the lower region, where both components decrease ad infinitum towards the origin.
The shown trajectory is representative for all trajectories passing through Rupper.
Clearly, none of them is unbounded in both components in backward-time. Hence,
no trajectory as in Corollary 3 can be used to dominate all points in Rn+ and the
construction of that corollary fails.

Next we show, that there is no “other” max-separable, locally Lipschitz con-
tinuous Lyapunov function satisfying (10) either. By way of contradiction assume
that there is a V (x1, x2) = max{V1(x1), V2(x2)}. Since V (x1, 0) = V1(x1) and
V (0, x2) = V2(x2) we conclude that Vi, i = 1, 2, are locally Lipschitz continuous
and hence differentiable almost everywhere.

Now assume with loss of generality that V1 is differentiable at all n ∈ N and
observe that V (x1, 0) = V1(x1) implies V ′1(s) = d

dsV1(s) ≥ 0 wherever the derivative
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exists. Moreover, there must be some N ≥ 1 such that for all n ≥ N we have
V (n, 2) = V1(n). Hence for n ≥ N , we find

V̇ (n, 2) = V ′1(n)f1(n, 2)

= V ′1(n)

(
2− n

1 + n

)
≥ 0.

The same argument would work along any other horizontal line above Rlower, so
we can actually show that V̇ ≥ 0 on a set of positive measure. This, however,
contradicts the fact that V is supposed to be Lyapunov function. Hence, this
system does not admit any max-separable Lyapunov function satisfying (10). In
fact, this is consistent with Theorem 3.3.

Now consider the C1 function V (x1, x2) = x1 + 2x2. On R2
+ it is positive definite

and radially unbounded. The system is globally asymptotically stable. We have
V̇ = ẋ1 + 2ẋ2 = − x1

1+x1
− x2 < 0 for all x1 > 0 and x2 > 0. So V must be a

Lyapunov function, and very clearly it is sum-separable. This establishes that the
origin is globally asymptotically stable.

0 1 2 3 4 5
0

1

2

3

4

5

Ω = {x: f(x)� 0}

ẋ1 > 0 and ẋ2 < 0

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

x1

x
2

Figure 8. Sign patterns of the right-hand side of system (56)
given in Section 4.1. Although the system is globally asymptot-
ically stable, it does not admit a global max-separable Lyapunov
function. The simple reason is that no trajectory is unbounded in
all components in backward-time.

4.2. Example of a system that does not exhibit a sum-separable nor a
max-separable Lyapunov function. Our second example shows that for non-
compact state-space a sum-separable, locally Lipschitz continuous Lyapunov func-
tion does not need to exist either.

4.2.1. Preliminary step. Consider the following two-dimensional (preliminary) sys-
tem on R+ × R+:

d

dt

(
x1
x2

)
= f̂(x1, x2) :=




x2
2

x2
2+1
− x1

x1 − 2x2
2

x2
2+1


 (57)
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Clearly, if x1 >
x2
2

x2
2+1

then f̂1(x1, x2) < 0 and if x1 <
2x2

2

x2
2+1

then f̂2(x1, x2) < 0.

Thus, for
x2
2

x2
2+1

< x1 <
2x2

2

x2
2+1

one has f̂1(x1, x2) < 0 and f̂2(x1, x2) < 0, as depicted

in Figure 9.

0 1 2 3 4 5
0

1

2

3

4

5

ẋ1 < 0 and ẋ2 > 0

ẋ
1
>

0
a
n

d
ẋ
2
<

0

Ω
=
{ x

:f̂
(x

)
�

0}

x1

x
2

Figure 9. Sign patterns of the right-hand side of system (57)
given in Section 4.2 and two representative trajectories. Although
the system is globally asymptotically stable, it does not admit a
global sum-separable Lyapunov function.

Now, assume that for (57) there exists a strict global Lyapunov function of the
form

V (x1, x2) = V1(x1) + V2(x2), (58)

i.e., W is supposed to be differentiable (not necessarily continuously differentiable)
on R2

+ and has to satisfy the condition

V̇ (x1, x2) := V ′1(x1)f̂1(x1, x2) + V ′2(x2)f̂2(x1, x2) < 0 (59)

for all (x1, x2) ∈ R2
+ \ {(0, 0)}, where V ′1 and V ′2 denote the derivatives of V1 and

V2, respectively.

4.2.2. Step 1. Now, we pass from (57) to the following system

d

dt

(
x1
x2

)
= f(x1, x2) :=

(
f1(x1, x2)
f2(x1, x2)

)
(60)

where f1 equals f̂1 and f2 has the same sign pattern as f̂2, yet a different limit
behaviour. More precisely, there should exist 0 < x∗ < 1 and x∗ > 2 such that

lim
x2→∞

f2(x∗, x2) = 0 and lim
x2→∞

f2(x∗, x2) =∞.
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4.2.3. Claim. If there exists a map f2 with the above properties then (60) does not
admit a Lyapunov function of the form (58).

Proof. Assume that (60) has a Lyapunov function of the form (58). This, however,
would imply the following (contradictory) limit behaviour for U ′(x2):

(a) On the one hand, the inequality

V̇ (x∗, x2) = V ′1(x∗)︸ ︷︷ ︸
>0

f1(x∗, x2) + V ′2(x2)︸ ︷︷ ︸
>0

f2(x∗, x2)︸ ︷︷ ︸
<0

< 0

implies limx2→∞ V ′2(x2) = ∞ because limx2→∞ f1(x∗, x2) = 1 − x∗ > 0 and
limx2→∞ f2(x∗, x2) = 0.

(b) On the other hand, the inequality

V̇ (x∗, x2) = V ′1(x∗)︸ ︷︷ ︸
>0

f1(x∗, x2)︸ ︷︷ ︸
<0

+V ′2(x2)︸ ︷︷ ︸
>0

f2(x∗, x2)︸ ︷︷ ︸
>0

< 0

implies limx2→∞ V ′2(x2) = 0 because limx2→∞ f1(x∗, x2) = 1 − x∗ < 0 and
limx2→∞ f2(x∗, x2) =∞.

Thus, once we have shown that such a map f2 does exist we have also proved that
(60) does not admit a Lyapunov function of the form V (x1, x2) = V1(x1) + V2(x2).

4.2.4. Step 2. Here, we explicitly “construct” a map f2 which satisfies the above re-
quirements. Choose continuously differentiable, positive definite functions α : R+ →
R+ and β : R+ → R+ such that

lim
x2→∞

α(x2) = 0, lim
x2→∞

β(x2) =∞, and

lim
x2→∞

α(x2)eλβ(x2) =∞
(61)

for some suitable λ > 0. Then, define f2 : R2
+ → R as follows

f2(x1, x2) := α(x2)
(

e
β(x2)

(
x1− 2x22

x22−1

)
− 1
)

= α(x2)
(

eβ(x2)f̂2(x1,x2) − 1
)
.

Obviously, f2 has the same sign pattern as f̂2. Moreover, for x∗ < 2 and x∗ := 2+λ
one has the following limit behaviour

lim
x2→∞

f2(x∗, x2) = lim
x2→∞

−α(x2) = 0 and

lim
x2→∞

f2(x∗, x2) = lim
x2→∞

α(x2)eβ(x2)
(
x∗−2

)
=∞.

4.2.5. Step 3. Finally, we have to choose α and β such that (60) is monotone and
asymptotically stable.

Monotonicity According to the discussion below (8), all we have to check is that
∂f1
∂x2

and ∂f2
∂x1

are non-negative. Indeed, we find

∂f1
∂x2

(x1, x2) =
2x2(x22 + 1)− 2x32

(x22 + 1)2
=

2x2
(x22 + 1)2

≥ 0

and
∂f2
∂x1

(x1, x2) = α(x2)β(x2)e
β(x2)

(
x1− 2x22

x22−1

)
> 0.

Thus (60) defines a monotone system on R+ × R+, whenever α and β are strictly
positive.

Asymptotic stability First, the positive invariance of R+ × R+ under the flow
of (60) follows straightforwardly by inspection of the vector field f = (f1, f2) on
the x1- and x2-axis. Moreover, there are obviously no other equilibria in R+ × R+

0bf24e7 2015-03-26 00:00:39 +0100 Accepted for publication in
“Discrete and Continuous Dynamical Systems - Series B (DCDS-B)”

p.24



SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 25

than (0, 0). To prove global asymptotic stability of (0, 0), it suffices to show that
all solutions of (60) eventually reach the set

Ω =
{

(x1, x2) ∈ R2
+ :

x2
2

x2
2+1

< x1 <
2x2

2

x2
2+1

}

introduced in (9), because Ω is positively invariant under the flow of (60) and
admits W (x1, x2) := x1 + x2 as Lyapunov function. Due to the sign pattern of f1
and f2, the “attractiveness” of Ω is easily established once one can guarantee that
the vector field f is complete (no finite escape time). Therefore, one has to choose
α and β in a moderate way, e.g.

α(x2) :=
(

ln(x2 + c)
)−1

and β(x2) := ln
(

ln(x2 + c)
)

with c > e. Then clearly the first two limit conditions of (61) are satisfied. More-
over, for any λ > 1 (and thus for any x∗ > 3) one has

lim
x2→∞

α(x2)eλβ(x2) = lim
x2→∞

(
ln(x2 + c)

)−1
eλ ln

(
ln(x2+c)

)

= lim
x2→∞

(
ln(x2 + c)

)λ−1
=∞.

Now with the above choice of α and β we can prove that Ω is “attractive”. To this
end, define

Ω1 :=
{

(x1, x2) ∈ R2
+ : f1(x1, x2) < 0

}

=
{

(x1, x2) ∈ R2
+ :

x2
2

x2
2+1

< x1

}

and

Ω2 :=
{

(x1, x2) ∈ R2
+ : f2(x1, x2) < 0

}

=
{

(x1, x2) ∈ R2
+ : x1 <

2x2
2

x2
2+1

}

Case 1: Let (x01, x
0
2) ∈ Ω1 \Ω. Then, Ω1(x01) := Ω1∩{(x1, x2) ∈ R2

+ : x1 ≤ x01} is
positively invariant under the flow of (60). This follows easily from the behaviour
of the vector field f on the boundary of Ωf (x01). On Ωf (x01), we can estimate f2 as
follows

|f2(x1, x2)| ≤
∣∣∣α(x2)

(
e
β(x2)

(
x1− 2x22

x22−1

)
− 1
)∣∣∣

≤
∣∣ ln(x2 + c)

∣∣x1
+
∣∣ ln(x2 + c)

∣∣−1

≤
∣∣ ln(x2 + c)

∣∣−1 +
∣∣ ln(x2 + c)

∣∣x0
1

≤
∣∣ ln(x2 + c)

∣∣−1 + C(x
1/x0

1
2 )x

0
1 ≤ C ′x2

with appropriate constants C > 0 and C ′ > 0. Therefore, finite escape time
phenomena can be excluded by a standard Grönwall type estimate. Hence, any
solution starting in Ωf has to reach Ω eventually.

Case 2: Let (x01, x
0
2) ∈ Ω2 \ Ω. Then, Ω2(x02) := Ω2 ∩ {(x1, x2) ∈ R2

+ : x2 ≤ x02}
is positively invariant under the flow of (60). Since Ω2(x02) is also bounded the
corresponding solution does exist for all t > 0.

4.2.6. Step 4. Finally, from Figure 9 and the reasoning in Section 4.1 it is clear
that this system does not have a max-separable Lyapunov function either.
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5. Conclusions. This work has considered separable Lyapunov functions for mono-
tone systems ẋ = f(x) evolving on the positive orthant in Euclidean n-space. Here
a Lyapunov function is called separable, if it can either be written as a sum or as a
maximum of n functions, each of a single scalar argument. Due to a linearization
argument and the Perron-Frobenius theory it is clear that both types of separable
Lyapunov functions must exist in a small neighborhood of the origin, provided f is
continuously differentiable at the origin and Df(0) is Hurwitz.

Theorem 3.2 and its corollaries have shown that a max-separable Lyapunov
function can be constructed for arbitrary compact sets in the domain of attraction,
using essentially only the knowledge about one trajectory of the system.

For planar systems, Theorem 3.3 and its corollaries have clarified a necessary con-
dition for max-separable Lyapunov functions to yield bounded level sets. Moreover,
formulas have been given to construct sum-separable Lyapunov functions based on
a little more information than one trajectory.

Both approaches have been demonstrated by examples, pointing out a disconti-
nuity phenomenon and restrictions on the right hand side f that result from the
existence of a certain type of Lyapunov function. It has also been argued in Sec-
tion 3.2.3 that, despite their many advantages, sum-separable Lyapunov functions
can be impractical for Lyapunov function based controller design due to the high-
order nonlinearities that appear in our construction when the convergence rate of
the system that can be obtained is too small (i.e., c < 2 in (29)). In contrast, a
slow convergence rate does not necessarily imply high-order nonlinearities in the
construction of max-separable Lyapunov functions, due to the “switching” between
functions.

In the last section two elaborate examples were given, showing that there are sys-
tems that admit sum- but not max-separable Lyapunov functions and also globally
asymptotically stable systems that admit neither.

Acknowledgement. The authors like to thank Michael Schönlein for his careful
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[8] S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth, Small gain theorems for large scale systems

and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48 (2010), 4089–4118.
[9] P. De Leenheer, D. Angeli and E. D. Sontag, Monotone chemical reaction networks, Journal

of Mathematical Chemistry, 41 (2007), 295–314.

[10] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I — Modelling, State Space
Analysis, Stability and Robustness, Springer, Berlin, 2005.

[11] M. W. Hirsch and H. Smith, Monotone dynamical systems, in Handbook of differential equa-
tions: ordinary differential equations. Vol. II, Elsevier B. V., Amsterdam, 2005, 239–357.

[12] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit

sets, SIAM J. Math. Anal., 13 (1982), 167–179.

0bf24e7 2015-03-26 00:00:39 +0100 Accepted for publication in
“Discrete and Continuous Dynamical Systems - Series B (DCDS-B)”

p.26



SEPARABLE LYAPUNOV FUNCTIONS FOR MONOTONE SYSTEMS 27

[13] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Con-

vergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423–439.

[14] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III.
Competing species, Nonlinearity, 1 (1988), 51–71.

[15] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Con-

vergence in 3-dimensional systems, J. Diff. Eqns., 80 (1989), 94–106.
[16] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. IV.

Structural stability in three-dimensional systems, SIAM J. Math. Anal., 21 (1990), 1225–

1234.
[17] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. VI.

A local Cr closing lemma for 3-dimensional systems, Ergodic Theory Dynam. Systems, 11

(1991), 443–454.
[18] M. W. Hirsch and H. L. Smith, Competitive and cooperative systems: mini-review, in Positive

systems (Rome, 2003), vol. 294 of Lecture Notes in Control and Inform. Sci., Springer, Berlin,
2003, 183–190.

[19] H. Ito, A Lyapunov approach to cascade interconnection of integral input-to-state stable

systems, IEEE Trans. Autom. Control, 55 (2010), 702–708.
[20] H. Ito and Z.-P. Jiang, Necessary and sufficient small gain conditions for integral input-to-

state stable systems: A Lyapunov perspective, IEEE Trans. Autom. Control, 54 (2009),

2389–2404.
[21] H. Ito, State-dependent scaling problems and stability of interconnected iISS and ISS systems,

IEEE Trans. Autom. Control, 51 (2006), 1626–1643.

[22] H. Ito, S. Dashkovskiy and F. Wirth, Capability and limitation of max- and sum-type con-
struction of Lyapunov functions for networks of iISS systems, Automatica J. IFAC, 48 (2012),

1197–1204.

[23] H. Ito, Z.-P. Jiang, S. Dashkovskiy and B. S. Rüffer, Robust stability of networks of iISS
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[34] B. S. Rüffer, P. M. Dower and H. Ito, Computational comparison principles for large-scale

system stability analysis, in Proc. of the 10th SICE Annual Conference on Control Systems,

Kumamoto, Japan, 2010, (electronic).
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