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Abstract. While global convergence of the Douglas–Rachford iteration is of-
ten observed in applications, proving it is still limited to convex and a handful
of other special cases. Lyapunov functions for difference inclusions provide not
only global or local convergence certificates, but also imply robust stability,
which means that the convergence is still guaranteed in the presence of persis-
tent disturbances. In this work, a global Lyapunov function is constructed by
combining known local Lyapunov functions for simpler, local sub-problems via
an explicit formula that depends on the problem parameters. Specifically, we
consider the scenario where one set consists of the union of two lines and the
other set is a line, so that the two sets intersect in two distinct points. Locally,
near each intersection point, the problem reduces to the intersection of just two
lines, but globally the geometry is non-convex and the Douglas–Rachford oper-
ator multi-valued. Our approach is intended to be prototypical for addressing
the convergence analysis of the Douglas–Rachford iteration in more complex ge-
ometries that can be approximated by polygonal sets through the combination
of local, simple Lyapunov functions.

1. Introduction

The Douglas–Rachford iteration was originally introduced in [15], subsequently
generalized in [25], and is a well known method for finding a point in the intersec-
tion of two or more closed sets in a Hilbert space. It has found various applications
both in the case when the involved sets are convex [5, 25] and in the case when
at least one set is non-convex [2, 16, 20]. The convergence of the algorithm in the
latter case is still not fully understood to date.

When both sets are convex, it is known that the Douglas–Rachford operator
is firmly non-expansive (e.g., via [19, Theorem 12.2] and repeated application of
[19, Theorem 12.1]) and, if the operator has a fixed point, the algorithm converges
if the ambient space is finite dimensional and converges weakly if the space is
infinite dimensional [26]. Despite its use in applications, much less is substantiated
theoretically about the convergence behavior of the algorithm if the sets are non-
convex. Specific cases where convergence proofs have been obtained include the
case where the first set is the unit Euclidean sphere and the second set is a line [11,
1, 9]. In [11], the authors show local convergence to the intersection points, that
in some special cases one can obtain global convergence, and that in the non-
feasible case the Douglas–Rachford iteration is divergent. A stronger result with a
larger, explicit domain of convergence was proved in [1]. In [9], the author gives an
explicit construction of a Lyapunov function for the Douglas–Rachford iteration
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in the case of the sphere and a line. This in turn implies global convergence for
all points which are not in the subspace of symmetry. In fact, the construction
in [9] can be used to prove a type of convergence which is stronger than norm
convergence [17], cf. Section 3. In [3] the global behavior of the Douglas–Rachford
iteration for the intersection of a half-space with a possibly non-convex set is
analyzed, which has applications in combinatorial optimization problems. Global
convergence in the case that one of the involved sets is finite is shown in [6].
The authors of [10] study ellipses and p-spheres intersecting a line, while proving
local convergence and employing computer-assisted graphical methods for further
analysis. The authors of [14] employ the Douglas–Rachford iteration for finding
a zero of a function and generalize the Lyapunov function construction of [9]
using concepts from nonsmooth analysis to this case. In [21], the authors show
local linear convergence of non-convex instances of the Douglas–Rachford iteration
based on the notion of local subfirm nonexpansiveness and coercivity conditions.
A generalization to superregular (possibly non-convex) sets is given in [27], as well
as in the forthcoming works [12, 13]. In [24] the Douglas–Rachford method is
employed to minimize the sum of a proper closed function and a smooth function
with a Lipschitz continuous gradient, showing convergence when the functions
are semi-algebraic and the step-size is sufficiently small. In [8] local convergence
is shown in the case of non-convex sets that are finite unions of convex sets,
while it is also demonstrated that convergence may fail in the case of more general
sets. Difference inclusions more general than the Douglas–Rachford iteration along
with their convergence behavior have also been studied in the systems theory
literature [23].

In this paper we prove global convergence of a Douglas–Rachford iteration (in
fact, we even prove global robust KL-stability) for yet another specific case of a
non-convex set, consisting of two non-parallel lines, and a second set, which is also
a line, so that the first and the second set intersect in exactly two points, cf. Fig. 1.
This scenario is intended to be prototypical for the study of the intersection of

p1 p2

θ1 θ2 B

A1A2

Figure 1. The geometry studied in the paper: One non-convex
set, consisting of two lines (red), and another convex set, consisting
of one line (blue), with two unique intersection points p1 and p2.

polygonal sets, which could be approximations of norm-spheres or ellipses. We
remark that local convergence for the scenario is already proven in [8]. And
while [14] may seem to cover the current scenario as a special case, it does in fact
not, as the non-convex set A in this scenario cannot be represented as the graph
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of a function defined on the set B, and because for a global Lyapunov function
construction the two isolated attractors p1 and p2 are in conflict with a convexity
assumption on the energy function in [14] (both pi would have to be local minima).

Our main contribution is the construction of a global Lyapunov function for ro-
bust KL-stability in Theorem 5.3. Unlike previous contributions to the Douglas–
Rachford convergence analysis based on Lyapunov functions, our construction
follows the divide-and-conquer paradigm of re-using known, local Lyapunov func-
tions in our construction of a global Lyapunov function. To this end we use the
global Lyapunov functions for the Douglas–Rachford iterations corresponding to
the intersection problem between two lines. These are essentially the distance to
the intersection point and, in the problem depicted in Fig. 1, they are local Lya-
punov functions near each intersection point for the non-convex Douglas–Rachford
difference inclusion. The novelty in our contribution is that for a range of problem
parameters we can then combine these local Lyapunov functions into a global Lya-
punov function for the Douglas–Rachford iteration for the non-convex problem.
We can thus deduce that the Douglas–Rachford iteration converges in a non-convex
scenario provided certain conditions on the geometry are met. At the same time,
we know from extensive numerical experiments that Douglas–Rachford iterations
are not guaranteed to converge to a feasible point for all problem parameters.
One of the advantages of using Lyapunov functions is the fact that in many cases
the existence and properties of a Lyapunov function imply types of convergence
which are stronger than point-wise norm convergence. In Corollary 5.6 explicit
error bounds for the solutions of perturbed versions of the Douglas–Rachford it-
eration are given for certain choices of angles θ1, θ2. This means that even if we
allow small perturbations of the elements of the Douglas–Rachford iterates, we
still obtain uniform convergence on bounded sets.

This paper is organized as follows. Notation is introduced in Section 2. In
Section 3 we review known concepts and results from [23] on robust stability with
respect to two measures for difference inclusions. This includes the definition of
a Lyapunov function as it is commonly used in the modern systems and control
literature. The definition of the Douglas–Rachford iteration is recalled in Section 4.
In Section 5 we discuss the Douglas–Rachford iteration for two sets A and B with
A consisting of two non-parallel lines and B another line, so that the intersection
of A and B consists of two points. A technical proof in this section has been
postponed to Appendix A. In Section 6 several open problems for further research
are formulated, while Section 7 concludes the paper.

Sagemath [29] code in the form of a jupyter notebook is available at [18] for
the interested reader to experiment with. This code implements the geometry
described above as well as the associated Douglas–Rachford operator.

2. Notation

Denote R+ := [0,∞[ and Z+ := {0, 1, 2, . . . }. By bold letters, like e, x, and p,
we denote vectors in the Hilbert space H, and for most of this paper H is either
Rd or R2. Let B(x, ρ) (B[x, ρ]) denote the open (closed) ball in Rd centered at x
with radius ρ, with respect to the Euclidean norm. Let e1, e2 denote the standard
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basis vectors in R2, e1 := (1, 0), e2 := (0, 1). By Mθ we denote the rotation matrix[
cos θ sin θ
− sin θ cos θ

]
acting on R2. A function β : R+ × R+ → R+ is said to be of class KL if for every
t > 0, β(·, t) is continuous, strictly increasing, and β(0, t) = 0, and also for every

s ∈ R+, β(s, ·) is decreasing, and satisfies β(s, t)
t→∞−→ 0. A function ϕ : R+ → R+

is said to be of class K∞ if it is continuous, strictly increasing, unbounded, and
satisfies ϕ(0) = 0.

3. The Role of Lyapunov Functions in Robust Stability

In this section we take a detour to recall some known definitions and results
from the theory of discrete time dynamical systems and difference inclusions. For
more information on the subject the interested reader is referred to [23]. This will
serve as a basis for the following section where we will demonstrate that certain
instances of the Douglas–Rachford iteration are robustly KL-stable.

Let U ⊂ Rd, T : U ⇒ U be a multi-valued map, and consider the difference
inclusion

xn+1 ∈ Txn, n ∈ Z+. (1)

A solution to the initial value problem given by the difference inclusion (1) with
initial condition x0 ∈ U , which we denote by

φ(x0, ·) : Z+ → Rd,

is a function that satisfies φ(x0, 0) = x0 and

φ(x0, n+ 1) ∈ T
(
φ(x0, n)

)
for all n ∈ Z+. Note that for difference inclusions there may well be more than
one solution for the same initial value problem. The set of all solutions to (1) is
denoted by S(x0, T ). We will also commonly speak of solutions of the difference
inclusion (1) and really mean solutions to a corresponding initial value problem
that will be clear from the context. A periodic solution φ(x0, ·) : Z+ → Rd is a
solution of (1) that is periodic in n, i.e., there exists a K ∈ Z+, K > 1, such
that φ(x0, n + K) = φ(x0, n) for all n ∈ Z+. A periodic orbit is the image of a
periodic solution in Rd, i.e., the set {φ(x0, n) : n ∈ Z+}. We define several stability
properties for the difference inclusion (1).

Definition 3.1 (KL-stability). Let ω1, ω2 : Rd → R+ be continuous functions.
The difference inclusion (1) is said to be KL-stable with respect to (ω1, ω2) iff
there exists β ∈ KL such that for every x ∈ Rd, every φ ∈ S(x, T ) and every
n ∈ Z+,

ω1(φ(x, n)) ≤ β(ω2(x), n).

For example, if ω1 = ω2 is just the distance to some set of interest, then KL-
stability says that solutions for any initial conditions will converge to this set with
a uniform rate of convergence (which is encoded in β). To define the stronger
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notion of robust KL-stability we need to introduce a few additional concepts. Let
σ : Rd → R+ and for a set K ⊆ Rd define its dilation with respect to σ by

Kσ :=
⋃
x∈K

B[x, σ(x)].

Given a map T : Rd ⇒ Rd, define the σ-perturbation of T by

Tσx :=
⋃

y∈T (B[x,σ(x)])

B[y, σ(y)],

and let Sσ(x0, T ) := S(x0, Tσ) be the collection of all solutions to the perturbed
difference inclusion xn+1 ∈ Tσxn with initial condition x0. Notice that if σ ≡ 0,
the constant zero function, then Tσ = T . Finally, given a continuous function
ω1 : Rd → R+, define the two sets

Aσ := Aσ(T, ω1) :=
{

x ∈ Rd : sup
n∈Z+

sup
φ∈Sσ(x,T )

ω1(φ(x, n)) = 0
}

and

A := A(T, ω1) :=
{

x ∈ Rd : sup
n∈Z+

sup
φ∈S(x,T )

ω1(φ(x, n)) = 0
}
. (2)

Definition 3.2 (Robust KL-stability). Let ω1, ω2 : Rd → R+ be continuous. The
difference inclusion (1) is said to be robustly KL-stable with respect to (ω1, ω2) iff
there exists a continuous function σ : Rd → R+ such that

(1) for all x ∈ Rd \ A, σ(x) > 0;
(2) Aσ = A;
(3) the difference inclusion xn+1 ∈ Tσxn is KL-stable with respect to (ω1, ω2).

Definition 3.3 (Lyapunov function). Let ω1, ω2 : Rd → R+ be two continuous
functions. A function V : Rd → R+ is said to be a Lyapunov function with respect
to (ω1, ω2) for the difference inclusion (1) iff there exist ϕ1, ϕ2 ∈ K∞ and γ ∈ [0, 1)
such that for all x ∈ Rd,

ϕ1(ω1(x)) ≤ V (x) ≤ ϕ2(ω2(x)); (3)

supy∈Tx V (y) ≤ γV (x); (4)

V (x) = 0 ⇐⇒ x ∈ A, (5)

where A is defined as in (2).

There is an intimate connection between the stability properties of the difference
inclusion (1) and the existence and properties of associated Lyapunov functions.
In particular, the following is known.

Theorem 3.4 (Theorem 2.8 in [23]). Assume that T : Rd ⇒ Rd is such that Tx
is compact for all x ∈ Rd. Suppose also that there exists a continuous Lyapunov
function on Rd with respect to two continuous functions ω1, ω2. Then the difference
inclusion (1) is robustly KL-stable with respect to (ω1, ω2).
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4. The Douglas–Rachford Iteration

For two sets the algorithm can be described as follows. Given a non-empty set
A in a Hilbert space (H, ‖ · ‖) and a point x ∈ H denote d(x, A) := infz∈A ‖x− z‖.
The projection operator PA : H ⇒ H is given by

PAx := {y ∈ H : ‖x− y‖ = d(x, A)}
and in general it can be multi-valued, but is single-valued if A is non-empty,
closed, and convex. Given two closed, non-empty sets A,B ⊆ H, define the
Douglas–Rachford operator TA,B : H ⇒ H by

TA,B :=
I +RBRA

2
,

where I : H → H is the identity operator, and, given a set A ⊆ H, RA is the
reflection operator given by RA := 2PA−I. The case where A∩B 6= ∅ is known as
the feasible case. In this paper we will only discuss the feasible case. Specifically,
we consider the convergence behavior of the difference inclusion xn+1 ∈ TA,Bxn,
with n ∈ Z+, and x0 ∈ H, which is known as a Douglas–Rachford iteration of x0.

5. Combining Local Lyapunov Functions to Global Ones

Finding Lyapunov functions is in general the hard part of Lyapunov stability
analysis. A divide-and-conquer inspired approach is to try and find Lyapunov
functions for simple sub-problems and then combine these into a Lyapunov func-
tion for the general case of interest.

In this section we demonstrate that this can be done in a prototypical non-
convex scenario for the Douglas–Rachford iteration. In this scenario it is very easy
to formulate global Lyapunov functions for the sub-problems (intersections of two
lines). In the general version of the problem these functions become then local
Lyapunov functions, i.e., they satisfy the descent condition (4) only locally, that
is, sufficiently close to a fixed point of the difference inclusion (1). The challenge is
then to combine these local Lyapunov functions to one global Lyapunov function,
which we demonstrate in Theorem 5.3.

There are several motivations to consider the very simple geometry in this sec-
tion. Firstly, the case considered here is possibly the simplest non-convex geom-
etry where the Douglas–Rachford iteration converges globally to feasible points
for a range of problem parameters. Secondly, it is the first case known to the
authors where a global Lyapunov function for the Douglas–Rachford iteration
has been constructed from simpler, known local Lyapunov functions. Thirdly,
via approximation of circles, ellipses or function graphs through polygons it is
not unreasonable to expect that a refined and possibly more localized version of
our method could also provide (alternative) Lyapunov function constructions for
more involved non-convex geometries like circle and line (cf. [9]), ellipse and line
(cf. [10]), or general function graphs and line (cf. [14]). This could open the door
to novel sufficient conditions for the convergence of Douglas–Rachford iterations
in non-convex scenarios.

5.1. Douglas–Rachford Iteration for Two Intersecting Lines. A case which
is elementary and well understood is the case of two straight lines in R2, cf. Fig. 2.
For a more general treatment of the intersection of two subspaces we refer the
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reader to [4]. The qualitative behavior for this scenario, here presented from a

θ

A

B

x

TA,Bx

θ

p

Figure 2. A Douglas–Rachford step for the case of two lines in the
plane. Notice that the triangle 4(TA,Bx/p/x) is a right triangle.

Lyapunov function perspective, is summarized as follows.

Proposition 5.1. Suppose that A and B are two non-parallel straight lines in R2

which intersect at a point p, cf. Fig. 2. For simplicity we assume B is the x-axis.
Assume also that the angle from B to A is θ ∈]0, π[. Then the Douglas–Rachford
operator TA,B is single-valued, affine, and is given by

TA,B x = p + cos θMθ(x− p), (6)

for all x ∈ R2. Moreover, the function V : R2 → [0,∞) given by

V (x) := ‖x− p‖2, (7)

satisfies (3) with ϕ1(r) = ϕ2(r) = r2 and ω1(x) = ω2(x) = ‖x− p‖,
V (TA,Bx) = (cos2 θ)V (x) < V (x) whenever x 6= p , (8)

as well as V (x) = 0 if and only if x = p. That is, V is a global Lyapunov function
for the Douglas–Rachford iteration, and hence the latter is robustly KL-stable.

Proof. The result follows from the more general case in [4, Theorem 4.1 and Sec-
tion 5], up to translation by p, as well as an application of Theorem 3.4. �

The existence of a global Lyapunov function guarantees that the Douglas–
Rachford iteration converges to a fixed point for any initial condition.

Notice that we chose V to be the squared distance to p. In the control theory
literature the choice of a quadratic Lyapunov function is a de facto standard
for two reasons. One reason is the chain rule that simplifies the computation of
d
dt
V (x(t)) = ∇V (x)f(x) in continuous-time dynamics ẋ = f(x) at a point x = x(t)

without a requirement to compute solutions to a differential equation. The other
reason is the added smoothness (compared to simply using the distance) at the
reference point, which is beneficial in robustness analysis (especially in continuous-
time systems, cf. [22]) and control design (see, e.g., [28]).
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5.2. Douglas–Rachford Iteration for Two Lines Intersecting with a Third
Line. Now we assume that A1, A2, are two non-parallel straight lines that each
form a positive angle with the positive x-axis, and let A be given by A := A1∪A2.
We assume that B is the x-axis, and that we have A1∩B =: {p1}, A2∩B =: {p2}.

The case when p1 = p2, i.e., all three lines intersect in a single point, is not
very different from the discussion in the previous subsection. In fact, it can be
shown that the (squared) distance to the common intersection point is a global
Lyapunov function for the Douglas–Rachford iteration.

Here we concentrate on the more interesting case when p1 6= p2. Without loss
of generality we may assume p1 = −1/2 e1, p2 = 1/2 e1. Denote by θ1, θ2, the angles
of A1, A2, respectively, with the positive x-axis, as denoted in Fig. 1. We assume
from here onwards that 0 < θ1 ≤ π/2 and θ1 < θ2 < π (we exclude the cases
θ1 = 0, θ2 = 0, and θ1 = θ2 since in this case we have parallel lines, or lines that
coincide). The following three sets in R2 are of further interest,

D1 :=
{
x ∈ R2 : d(x, A1) < d(x, A2)

}
,

D2 :=
{
x ∈ R2 : d(x, A1) > d(x, A2)

}
, and (9)

D3 :=
{
x ∈ R2 : d(x, A1) = d(x, A2)

}
,

see Fig. 3. It is these sets that determine whether TA,B is multi-valued or singleton-
valued, i.e.,

TA,B x =


TA1,B x when x ∈ D1,

TA2,B x when x ∈ D2,{
TA1,B x, TA2,B x

}
when x ∈ D3.

(10)

For i = 1, 2, let Vi : R2 → R+ be the functions defined by

Vi(x) := ‖x− pi‖2. (11)

Following the reasoning of Proposition 5.1, these are now local Lyapunov functions
for the Douglas–Rachford iteration

x+ ∈ TA,B x, (12)

i.e., if x0 is already sufficiently close to a fixed point pi then the corresponding
sub-level set of Vi, {x ∈ R2 : Vi(x) ≤ Vi(x0)}, is completely contained in Di and
hence invariant under (12). By the decay condition (8) the sequence generated
by (12) must converge to pi.

However, if ‖x0−pi‖ is too large for the sub-level set to be completely contained
in Di, then it is a priori not clear to which point solutions of (12) emerging from
x0 converge, or whether they converge at all.

Theorem 5.3 establishes that the globally defined, local Lyapunov functions can
indeed be combined to a global Lyapunov function

V (x) := f
(
V1(x), V2(x)

)
, (13)

provided a sufficient condition on the angles θ1 and θ2 is met. It is common in
Lyapunov stability analysis that conditions are only sufficient and not necessary
(see [22] on the concept of converse Lyapunov functions; their existence proofs are
usually non-constructive). This global Lyapunov function in turn is a certificate for
the global asymptotic stability of the set {p1,p2} of fixed points for the iterative
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p1 p2

θ1 θ2 B

A1A2

D1

D1

D2

D2

Figure 3. Regions where the Douglas–Rachford operator is single,
respectively, multi-valued in the case of two lines (red) and one line
(blue). The orange domain is D1, the yellow domain is D2 (the
operator is singleton valued in both cases), and the two brown lines
are D3 (here the operator has two values).

scheme (12), that is, this Lyapunov function establishes among other properties
that every solution of (12) converges either to p1 or to p2 for certain configurations
of angles θ1 and θ2.

Before we can derive Theorem 5.3, we need to establish a number of technical
results that are summarized in the following proposition.

Proposition 5.2. Given ρ > 0, let

B1(ρ) :=
{
x ∈ R2 : V1(TA2,Bx) > ρV1(x)

}
B2(ρ) :=

{
x ∈ R2 : V2(TA1,Bx) > ρV2(x)

}
denote the sets where function Vi increases by at least a factor of ρ along solutions
generated by TA3−i,B.

If ρ > cos2 θ2 then

B1(ρ) = B

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2,

√
ρ sin θ2

ρ− cos2 θ2

)
(14)

and if ρ > cos2 θ1 then

B2(ρ) = B

(
p2 −

cos θ1 sin θ1
ρ− cos2 θ1

e2,

√
ρ sin θ1

ρ− cos2 θ1

)
, (15)

that is, the sets Bi are open balls.
If, moreover, ρ ≥ (1 + sin θ1)(1 + sin θ2), then

B1(ρ) ⊆ D1, (16)

and

B2(ρ) ⊆ D2, (17)

9



that is, the region where Vi increases along solutions generated by TA3−i,B is com-
pletely contained in Di, the set where TA,B is singleton-valued and coincides with
TAi,B.

Observe that (1 + sin θ1)(1 + sin θ2) > 1 ≥ cos2 θi for i = 1, 2 in our setting.
The proof of Proposition 5.2 can be found in Appendix A. We can now state the

main result of this section. Beforehand we should point out that local convergence
of the Douglas–Rachford iteration is already guaranteed by [8]. Our result implies
global convergence, despite the complex geometry of the regions of attraction of
the individual fixed points, see Fig. 4.

Figure 4. Regions of attraction for the case θ1 = π/3, θ2 = 2π/5
(for which condition (18) holds). The green circles are centered at
p1, p2, with radii d(p1, D3), d(p2, D3), respectively. The figure is
based on a simulation with about 1.5 million data points. For each
randomly chosen initial condition a corresponding solution is com-
puted until it enters the inside of one of the regions enclosed by
the green circles (which are sub-level sets of Vi and completely con-
tained in Di, thus invariant under TA,B), at which point necessarily
the solution converges to the respective intersection point pi. The
initial starting point is then colored accordingly.

Theorem 5.3. Suppose that either θ1 = π/2, θ2 = π/2, or that(
log
(
(1 + sin θ1)(1 + sin θ2)

))2
< log(cos2 θ1) log(cos2 θ2). (18)

10



Then there exist α ∈]0,∞[ and γ ∈]0, 1[ such that the function V : R2 → R+,
defined by

V (x) := V1(x)αV2(x), (19)

satisfies

• inequalities (3) with

ω1(x) := min{‖x− p1‖, ‖x− p2‖} = d(x, A ∩B), (20)

ω2(x) := max{‖x− p1‖, ‖x− p2‖}, (21)

ϕ1(r) := ϕ2(r) := r2α+2; (22)

• the decrease condition

sup
y∈TA,Bx

V (y) ≤ γV (x); (23)

• as well as V (x) = 0 if and only if x ∈ A := {p1,p2}.
That is, the Douglas–Rachford iteration (12) is robustly KL-stable with respect to
(ω1, ω2).

Proof. First we establish that there exist α ∈]0,∞[ and γ ∈]0, 1[ such that

(cos2 θ1)
α
(
(1 + sin θ1)(1 + sin θ2)

)
≤ γ

and

(cos2 θ2)
(
(1 + sin θ1)(1 + sin θ2)

)α ≤ γ.

(24)

Fig. 5 visualizes the relationship between condition (24) and assertion (23) in
Theorem 5.3. Inequalities (24) trivially hold if θ1 = π/2 or θ2 = π/2, so if θ1 6= π/2
and θ2 6= π/2 then for condition (24) to hold it is necessary and sufficient that
(cos2 θ1)

α
(
(1 + sin θ1)(1 + sin θ2)

)
< 1 and simultaneously (cos2 θ2)

(
(1 + sin θ1)(1 +

sin θ2)
)α
< 1, which in turn is equivalent to (18).

The first claim about the functions defined in (20), (21), and (22) satisfying (3)
follows by direct computation and the definition (19) of V . Obviously the functions
ϕi are of class K∞ as α > 0.

From its definition, V (x) = 0 holds if and only if x is either p1 or p2. This
establishes the third claim.

To establish the second claim, i.e., the decrease condition (23), we have to
consider several cases. The first is that x ∈ {p1,p2}. Then V (x) = V (TA,Bx) = 0
and so (23) holds.

Consider next the case that x ∈ D1 \ {p1,p2}. In this case TA,B = TA1,B is
single-valued by (10). We find

V (TA,Bx) = V (TA1,Bx) = V α
1 (TA1,Bx)V2(TA1,Bx)

= cos2α θ1V
α
1 (x)V2(TA1,Bx), (25)

where in the second line we have used (8) of Proposition 5.1. Now, if θ1 = π/2 then
this reads V (TA,Bx) = 0 ≤ γV (x), i.e., the proof for the case x ∈ D1 \ {p1,p2}
is complete. So in the following assume that θ1 6= π/2 and note that we also have
V1(x) > 0 since we assumed that x 6= p1. By way of contradiction, assume now
that we have

V (TA,Bx) > γV (x). (26)

11



p1 +
cos θ2 sin θ2
ρ−cos2 θ2

e2
p2 − cos θ1 sin θ1

ρ−cos2 θ1
e2

p1 p2 B

A1A2
D1

D1

D2

D2

B1(ρ1) B2(ρ2)

p1 +
cos θ2 sin θ2
ρ−cos2 θ2

e2

p2 − cos θ1 sin θ1
ρ−cos2 θ1

e2

p1 p2 B

A1A2
D1

D1

D2

D2

B1(ρ1)

B2(ρ2)

B1(ρ1) ∩D2

Figure 5. The open balls B1(ρ1), B2(ρ2), defined in Proposi-
tion 5.2, for two different choices of α (α = 1 on the left and α = 3 on

the right), θ1 = π/3, θ2 = 3π/5 and γ = 0.95. Here ρ1 =
(

γ
cos2 θ2

)1/α
and ρ2 = γ

(
1

cos2 θ1

)α
. In the left figure conditions (24) both hold,

while in the right figure the second condition is violated. In the left
figure the function V in (19) satisfies (23) everywhere, while in the
right figure it does not. The red slice of the open ball in the right
figure is the set of points where V (y) > γV (x) for y ∈ TA,B x.

Then we can arrange (25) into

V2(TA1,Bx) =

(
1

cos2 θ1

)α
· V (TA,Bx)

V α
1 (x)

(26)
>

(
1

cos2 θ1

)α
γ · V (x)

V α
1 (x)

(19)
=

(
1

cos2 θ1

)α
γV2(x)

(24)

≥ (1 + sin θ1)(1 + sin θ2)V2(x).

An application of Proposition 5.2 lets us deduce that x must be in D2. However,
the sets D1 and D2 are disjoint, so this contradicts our assumptions. This means
that the condition V (TA,Bx) > γV (x) cannot hold and we have V (TA,Bx) ≤
γV (x).

The case x ∈ D2 \{p1,p2} is analogous to the previous one and is thus omitted.
Finally, assume that x ∈ D3 \ {p1,p2}. Then by (10) we have TA,Bx ={
TA1,Bx, TA2,Bx

}
. Now, if, by way of contradiction, we assume V (TA1,Bx) >

γV (x) then as before it must follow that x ∈ D2. If V (TA2,Bx) > γV (x) then it
must follow that x ∈ D1. In both cases we get x /∈ D3, and so neither of these
inequalities can hold true. We therefore have in this case V (TA1,Bx) ≤ γV (x) and
V (TA2,Bx) ≤ γV (x). We have established that inequality (23), respectively, (4),
holds for all x ∈ R2.

This establishes that V is indeed a global Lyapunov function for (12) with
respect to (ω1, ω2), and by Theorem 3.4 it follows that the difference inclusion (12)
is robustly KL-stable. �

12



Remark 5.4. Numerical evidence suggests that the region in the parameter space
{(θ1, θ2) : 0 < θ1 ≤ π/2, θ1 < θ2 < π} where all solutions of the Douglas–Rachford
iteration converge to {p1,p2} is bigger than the set shown in Fig. 6a, while for
some parameter combinations that are outside this set, the Douglas–Rachford
iteration may get caught by attractive periodic orbits, cf. Figs. 6b–6d.

Next, we discuss how the order of reflections RA and RB affects the Lyapunov
function construction in this paper.

Corollary 5.5. Under the same assumptions as in Theorem 5.3, the same func-
tion V given in (19) satisfies the same conclusions for the
Douglas–Rachford iteration given by

z+ ∈ TB,A z.

In other words, for this particular geometry the order of the reflections in the
Douglas–Rachford iteration does not affect its robust stability.

Proof. By [7, Proposition 2.5 (i) and Lemma 2.4 (iii)] we have

TA,B = RBTB,ARB. (27)

Noting that R−1B = RB and that

Vi(RBx) = Vi(x) (28)

for all x ∈ R2 and i = 1, 2, we only need to verify the decrease condition.
From (23) we have that

sup
y∈TA,Bx

V (y) ≤ γV (x).

Let w ∈ TB,Az with z = RBx. We want to show that V (w) ≤ γV (z).
To this end note that with y = RBw, we have

V (w)
(28)
= V (RBw) = V (y),

where clearly y ∈ RBTB,ARBx
(27)
= TA,Bx. Hence we continue to estimate

(23)

≤ γV (x) = γV (RBz)
(28)
= γV (z).

This establishes the decrease condition. All other estimates are the same as in the
theorem. �

Theorem 5.3 allows us to specify explicitly the convergence behavior of the
Douglas–Rachford difference inclusion (12) even in the presence of perturbations.
For example, it is possible to prove the following robustness result.

Corollary 5.6. Under the assumptions of Theorem 5.3, and with ε ∈]0, 1[ such
that (1 + ε)2γ < 1, let

σ(x) =
(
(1 + ε)

1
2(1+α) − 1

)
d(x, A ∩B). (29)

Then for all x ∈ R2 and n ∈ Z+,

sup
φ∈Sσ(x,TA,B)

d(φ(x, n), A ∩B) ≤ max{‖x− p1‖, ‖x− p2‖}
(
(1 + ε)2γ

) n
2α+2 .

The proof of Corollary 5.6 can be found in Appendix B.
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(a) The different regions
(red) of parameters for which
not all solutions converge to
a fixed point of TA,B , rel-
ative to the admissible pa-
rameters (green) and region
where (18) holds (blue).
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(b) The parameters θ1 =
0.703469, θ2 = 3.138852 ad-
mit a periodic orbit with pe-
riod length 1410 containing
x0 = (0.392560,−0.351588).
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D1
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(c) The parame-
ters θ1 = 0.082719,
θ2 = 2.064601 admit a
periodic orbit with period
length 58 containing x0 =
(−0.123641,−0.510395).

− 1
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1
2

p1
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D3

D1

{xn} x1
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(d) The parameters θ1 =
0.748491, θ2 = 0.772301 ad-
mit a periodic orbit with pe-
riod length 2 containing x0 =
(0.101912, 0.189275).

Figure 6. Numerical experiments. In Fig. 6a we see regions in the
(θ1, θ2) plane (restricted to admissible pairs) of parameter combi-
nations for which not all solutions converge to {p1,p2}. A sample
solution (green) for the lump of points in the top right of the plot
is shown in Fig. 6b, as typical solution from the region on the left
in Fig. 6c, and one from the region closest to the θ1-axis in Fig. 6d.
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6. Perspectives and Open Problems

While the Lyapunov approach for studying asymptotic stability has a long his-
tory, its use to study convergence of Douglas–Rachford is very recent. Two main
reasons for its success are that, in essence, asymptotic stability implies the ex-
istence of a Lyapunov function, and, secondly, that these functions can provide
global stability certificates and, in the non-global case, useful estimates on the
regions of attraction, i.e., the sets of initial conditions from where the iteration is
going to converge. However, several problems are left open for further investiga-
tion.

One question concerning Theorem 5.3 is to find a Lyapunov function for a larger
region in the (θ1, θ2)-domain, cf. Fig. 6a, in order to reduce the conservativeness
inherent to the present approach. Notice that in the case where θ1 ∈]0, π/2] and
θ2 = π − θ1, the function V : R2 → R+, defined by

V (x) := min{V1(x), V2(x)}, (30)

satisfies V (TA,Bx) = cos2 θ1V (x). This case is particularly simple, since we have
TAi,BDi ⊆ Di for i = 1, 2. However, if V is chosen as in (30) then it does not
satisfy the decay condition (23) for some of the choices of θ1 and θ2 that satisfy
the assumptions of Theorem 5.3.

A natural extension of Theorem 5.3 concerns the study of affine subspaces in
higher dimensional spaces, along the lines of [4], which could provide a better intu-
ition for understanding the global convergence of the Douglas–Rachford iteration
in more general scenarios.

Yet another question concerns the study of the parameter regions where periodic
orbits seem to occur. In numerical experiments these periodic orbits appear to
be attracting nearby solutions, so it seems reasonable to conjecture that for the
periodic orbits, too, one can find suitable (local) Lyapunov functions and then use
these to estimate the corresponding regions of attraction, which are linked to the
success rate of the algorithm (ratio of convergent/nonconvergent solutions).

As for robustness, we did not try to give optimal bounds in Corollary 5.6, and
there may be room for further improvement.

For us the most interesting question is to construct a Lyapunov function for the
case of a polygon and a line, which opens a pathway towards considering even more
complex geometries like circle and line or ellipse and lines as limits of polygons,
possibly exploiting robustness properties along the way. If we consider the case
H = R2, then at any given point the Douglas–Rachford operator reflects either
with respect to two lines or with respect to a line and a point, see Fig. 7. This
question requires a better understanding of the Douglas–Rachford operator in the
case of multiple lines than we currently have.

The more general case of intersecting non-convex sets that are themselves finite
unions of convex sets is understood locally [8]. However, a Lyapunov approach
could shed light on the region of attraction and lead to the important insight what
other (other than convex) conditions ensure global convergence or at least a large
region of attraction, which is of interest in practice.

Lastly, a seemingly simple scenario, that was kindly brought to our attention
by Heinz Bauschke, is the convergence behavior in the case of two finite sets. In
this case projections are very easy to compute, but the resulting dynamics can be

15



p1 p2 B

A

Figure 7. The Douglas–Rachford iteration for a triangle (as a sim-
ple polygon) and a straight line. At each point we reflect either with
respect to the blue line and one of the red lines (the yellow-orange
domains) or with respect to the blue line and one of the red points
(the green domains). The black lines are where the map is multi-
valued.

very rich, and essentially nothing is known about the convergence behavior of the
Douglas–Rachford iteration to date. This problem, too, once understood, could at
a larger scale (many points!) be used to approximate more complex non-convex
cases and provide vital insights to their understanding. To put this into the words
of the late Jon Borwein: “If there is a problem you don’t understand, there’s a
smaller problem within it that you don’t understand. So solve that one first.” The
idea here is, of course, that the simpler problem is easier and its solution provides
crucial insight into the bigger problem.

7. Conclusions

This paper presents an explicit construction of a Lyapunov function for a
Douglas–Rachford iteration in a non-convex setting by combining simple, local
Lyapunov functions to a global Lyapunov function. It is discussed how the ex-
istence of a global Lyapunov function demonstrates not only global converge to
one of the intersection points, but also implies strong stability and robustness
properties of the Douglas–Rachford iteration. Several leads for further research
directions are provided.

Appendix A. Proof of Proposition 5.2.

We begin by establishing condition (14). The proof for condition (15) is essen-
tially the same and thus omitted for brevity.

Establishing Condition (14). We have by Proposition 5.1 that

TA2,Bx = p2 + cos θ2Mθ2 (x− p2) = 1/2e1 + cos θ2Mθ2 (x− 1/2e1) .
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If θ2 = π/2 then this simplifies further to TA2,Bx = p2, resulting in V1(TA2,Bx) = 1.
We can hence deduce that

1 = V1(TA2,Bx) > ρV1(x) = ρ‖x− p1‖2

⇐⇒ x ∈ B(p1,

√
ρ

ρ
). (31)

Now, if θ2 6= π/2 then we have

V1(TA2,Bx) = ‖TA2,Bx− p1‖2 = ‖TA2,Bx + 1/2e1‖2

= ‖e1 + cos θ2Mθ2 (x− 1/2e1)‖2 = ‖cos θ2Mθ2 (x− 1/2e1 + Sθ2e1)‖2

= cos2 θ2 ‖x− 1/2e1 + Sθ2e1‖2 ,
where Sθ2 := 1

cos θ2
M−θ2 satisfies Sθ2e1 = e1 + tan θ2e2, and so −1/2e1 + Sθ2e1 =

1/2e1 + tan θ2e2. The inequality V1(TA2,Bx) > ρV1(x) is thus equivalent to

cos2 θ2 ‖x + 1/2e1 + tan θ2e2‖2 > ρ ‖x + 1/2e1‖2 .
Expanding this gives

cos2 θ2‖x + 1/2e1‖2 + 2 cos2 θ2 tan θ2〈x + 1/2e1, e2〉+ cos2 θ2 tan2 θ2 > ρ ‖x + 1/2e1‖2

or, equivalently,

(ρ− cos2 θ2) ‖x + 1/2e1‖2 − 2 cos2 θ2 tan θ2 〈x + 1/2e1, e2〉 < sin2 θ2. (32)

By assumption we have ρ > cos2 θ2. Hence estimate (32) is equivalent to

‖x + 1/2e1‖2 − 2
cos2 θ2 tan θ2
ρ− cos2 θ2

〈x + 1/2e1, e2〉 <
sin2 θ2

ρ− cos2 θ2
.

Completing the square gives∥∥∥∥x + 1/2e1 −
cos θ2 sin θ2
ρ− cos2 θ2

e2

∥∥∥∥2 < sin2 θ2
ρ− cos2 θ2

+
cos2 θ2 sin2 θ2
(ρ− cos2 θ2)2

=
ρ sin2 θ2

(ρ− cos2 θ2)2
. (33)

Since θ2 ∈]0, π[, we have sin θ2 > 0 and so (33) is equivalent to

x ∈ B
(
−1/2e1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2,

√
ρ sin θ2

ρ− cos2 θ2

)
.

Since p1 = −1/2e1, this establishes (14), which contains (31) as a special case. �
An Auxiliary Lemma. Before we can proceed with the proof of the proposition,
we need the following auxiliary result, which provides a characterization of the set
D3 defined in (9). Note that since A1 and A2 are two non-parallel straight lines,
their intersection is a single point.

Lemma A.1. Let c be the unique intersection point of A1 and A2. Then

c =

(
sin(θ1 + θ2)

2 sin(θ2 − θ1)
,

sin θ1 sin θ2
sin(θ2 − θ1)

)
(34)

and we have

D3 =
{
x ∈ R2 : 〈x− c,n1〉 = 0

}
∪
{
x ∈ R2 : 〈x− c,n2〉 = 0

}
,
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where n1, n2, are given by

n1 =

(
cos

(
θ1 + θ2

2

)
, sin

(
θ1 + θ2

2

))
, (35)

n2 =

(
sin

(
θ1 + θ2

2

)
,− cos

(
θ1 + θ2

2

))
. (36)

Proof. The line A1 is the collection of all points x ∈ R2 that satisfy 〈x, e1〉 sin θ1
− 〈x, e2〉 cos θ1 + 1/2 sin θ1 = 0. Similarly, the line A2 is the collection of all points
x ∈ R2 that satisfy 〈x, e1〉 sin θ2 − 〈x, e2〉 cos θ2 − 1/2 sin θ2 = 0. Solving these two
equations implies that the intersection point c between A1 and A2 is indeed given
by (34). Now, the (normalized) normal vectors to the lines splitting the angles
between A1 and A2 are given by (35) and (36) and this completes the proof of the
auxiliary lemma. �

We are now in a position to establish condition (16). The proof of condition (17)
follows closely that of condition (16) and is thus omitted for reasons of space.

Establishing Condition (16). Since the direction vector of Ai is
(cos θi, sin θi), d⊥i := (sin θi,− cos θi) is a normal vector to Ai and the distance
of a point Q to Ai is given by |〈Q− pi,d

⊥
i 〉|. We compute

d

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2, A1

)
=

∣∣∣∣cos θ1 cos θ2 sin θ2
ρ− cos2 θ2

∣∣∣∣ (37)

and

d

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2, A2

)
=

∣∣∣∣cos2 θ2 sin θ2
ρ− cos2 θ2

+ sin θ2

∣∣∣∣ . (38)

Now, since θ1 ∈]0, π/2] and θ2 ∈]θ1, π[, we have | cos θ1 cos θ2| < 1, cos2 θi < 1,
sin θ2 > 0, and (1 + sin θ1)(1 + sin θ2) > 1. Since we assumed that ρ ≥ (1 +
sin θ1)(1 + sin θ2), we have | cos θ1 cos θ2| < 1 < ρ. With these estimates we can
bound (37) generously as

d

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2, A1

)
<

ρ sin θ2
ρ− cos2 θ2

(39)

and simplify (38) to

d

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2, A2

)
= sin θ2

(
cos2 θ2

ρ− cos2 θ2
+ 1

)
=

ρ sin θ2
ρ− cos2 θ2

. (40)

In light of (39) and (40), A1 is the closer line to p1 + cos θ2 sin θ2
ρ−cos2 θ2 e2, so it follows that

p1 + cos θ2 sin θ2
ρ−cos2 θ2 e2 ∈ D1. Therefore, in order to prove (16), it is enough to show that

√
ρ sin θ2

ρ− cos2 θ2
≤ d

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2, D3

)
, (41)

that is, we want the radius of the ball to be smaller than the distance of the center
to the boundary of D1 (which is exactly D3). Now, by the auxiliary Lemma A.1 ,
we have

d

(
p1 +

cos θ2 sin θ2
ρ− cos2 θ2

e2, D3

)
= min

i=1,2

{∣∣∣∣〈c− p1 −
cos θ2 sin θ2
ρ− cos2 θ2

e2,ni

〉∣∣∣∣} . (42)
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By squaring both sides of (41) and using (42) we need to establish that

ρ sin2 θ2
(ρ− cos2 θ2)2

≤ min
i=1,2

{(〈
c− p1 −

cos θ2 sin θ2
ρ− cos2 θ2

e2,ni

〉)2
}
.

Using (34), (35), (36), as well as standard trigonometric identities, the right hand
side simplifies to

= min

{(
sin θ2

2 sin
(
θ2−θ1

2

) − cos θ2 sin θ2
ρ− cos2 θ2

sin

(
θ1 + θ2

2

))2

, (43)(
sin θ2

2 cos
(
θ2−θ1

2

) +
cos θ2 sin θ2
ρ− cos2 θ2

cos

(
θ1 + θ2

2

))2}
, (44)

so that we need to verify two inequalities, both of which can be simplified further.
Starting with (43), we take a common denominator and extract common factors.
Using that 0 < θ2 < π, sin2 θ2 > 0, and ρ > cos2 θ2, as well as trusty trigonometric
identities, we simplify (43) to

ρ2 − (2− 2 sin θ1 sin θ2)ρ+ cos2 θ1 cos2 θ2 ≥ 0. (45)

A similar argument can be made for (44), which simplifies to

ρ2 − (2 + 2 sin θ1 sin θ2)ρ+ cos2 θ1 cos2 θ2 ≥ 0. (46)

For ρ > 0, the left hand side of (45) is greater than the left hand side of (46). So
it is sufficient to verify that (46) holds.

The roots of the quadratic polynomial in ρ on the left hand side of (46) are
ρ1,2 = 1 + sin θ1 sin θ2 ± (sin θ1 + sin θ2), so that (46) holds whenever ρ is larger or
equal to the larger of the two roots, i.e.,

ρ ≥ 1 + sin θ1 sin θ2 + sin θ1 + sin θ2 = (1 + sin θ1)(1 + sin θ2),

which establishes (16). �
This completes the proof of the proposition.

Appendix B. Proof of Corollary 5.6.

We begin with the following lemma.

Lemma B.1. Let V : R2 → R+ be defined as in (19). Let ε ∈ (0, 1), and define
σ : R2 → R+,

σ(x) =
(
(1 + ε)

1
2(1+α) − 1

)
d(x, A ∩B). (47)

Then for every x ∈ R2,

sup
z∈B[x,σ(x)]

V (z) ≤ (1 + ε)V (x).

Proof. Let z ∈ B[x, σ(x)]. We have

‖x− z‖ ≤
(

(1 + ε)
1

2(1+α) − 1
)
d(x, A ∩B)

=
(

(1 + ε)
1

2(1+α) − 1
)

min
{
‖x− p1‖, ‖x− p2‖

}
, (48)
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and so

‖z− p1‖ ≤ ‖z− x‖+ ‖x− p1‖
(48)

≤
(

(1 + ε)
1

2(1+α) − 1
)
‖x− p1‖+ ‖x− p1‖

= (1 + ε)
1

2(1+α)‖x− p1‖, (49)

and similarly,

‖z− p2‖ ≤ (1 + ε)
1

2(1+α)‖x− p2‖. (50)

Hence,

V (z) = V α
1 (z)V2(z) = ‖z− p1‖2α‖z− p2‖2

(49)∧(50)
≤ (1 + ε)

2α+2
2(α+1)‖x− p1‖2α‖x− p2‖2

= (1 + ε)V (x).

Since z ∈ B[x, σ(x)] is arbitrary, the result follows. �

Proof of Corollary 5.6. Let x ∈ R2. By the definition of the σ-perturbation, we
have

z ∈ (TA,B)σ(x) ⇐⇒ z ∈
⋃

y∈TA,B(B[x,σ(x)])

B[y, σ(y)].

Therefore, we have

sup
z∈(TA,B)σ(x)

V (z) = sup
z∈B[y,σ(y)]

y∈TA,B(B[x,σ(x)])

V (z)

(♣)
≤ (1 + ε) sup

y∈TA,B(B[x,σ(x)])

V (y)

(♠)
≤ (1 + ε)γ sup

y∈B[x,σ(x)]

V (y)

(♣)
≤ (1 + ε)2γV (x), (51)

where in (♣) we used Lemma B.1 and in (♠) we used (23) in Theorem 5.3. Let
x ∈ R2 and φ ∈ Sσ(x, TA,B). Then for all n ∈ Z+, we have by (51),

V (φ(x, n)) ≤
(
(1 + ε)2γ

)n
V (x). (52)

By Theorem 5.3, V is a Lyapunov function, and in particular satisfies condi-
tion (3). Therefore, for φ ∈ Sσ(x, TA,B),

d(φ(x, n), A ∩B)2α+2 (20)∧(22)
= ϕ1(ω1(φ(x, n)))
(3)

≤ V (φ(x, n))
(52)

≤
(
(1 + ε)2γ

)n
V (x)

(3)

≤
(
(1 + ε)2γ

)n
max{‖x− p1‖, ‖x− p2‖}2α+2.
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Altogether, for all x ∈ R2 and n ∈ Z+,

sup
φ∈Sσ(x,TA,B)

d(φ(x, n), A ∩B) ≤ max{‖x− p1‖, ‖x− p2‖}
(
(1 + ε)2γ

) n
2α+2 .

It is trivial to show that the function β : R+ × R+ → R+ defined by

β(s, t) = s
(
(1 + ε)2γ

) t
2α+2

is a KL-class function. The proof is therefore complete. �
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