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Abstract— This paper considers nonlinear dynamical net- [1]. Very recently, the observation has been extended to
works consisting of individually iISS (integral input-to-state  networks without any restriction on network graph topology
stable) subsystems which are not necessarily ISS (input-to-stat through explicit construction of a Lyapunov function [12].

stable). Stability criteria for internal and external stability of the . . . .
networks are developed in view of both necessity and sufficiency. The small-gain theorem for iISS networks is basically a

For the sufficiency, we show how we can construct a Lyapunov 9eneralization of previous developments for ISS networks.
function of the network explicitly under the assumption that However, there remain gaps between the iISS and ISS cases,
a cyclic small-gain condition is satisfied. The cyclic small- and so far no exhaustive explanation of the differences has
gain condition is shown to be equivalent to a matrix-like peen provided. Most of Lyapunov-based studies on ISS

condltlo_n. The two conditions and thelr eq_uwalence precisely small-gain criteria have employed the max-type constoucti
generalize some central ISS results in the literature. Moreover, -
of a Lyapunov functionl for a network as

the necessity of the matrix-like condition is established. The
allowable number of non-ISS subsystems for stability of the _ T
network is discussed through several necessity conditions. V(z) = m?X Wi(Vi(@:)), @)

which is the weighted maximum of Lyapunov functidrsof
individual subsystems [14], [16], [18], [6], [4]. Weightsea
Networks we often encounter in the diverse fields of sCify; . It has been proved in [10] that the max-type construction
ence, technology, business and management are aggregatir yields a Lyapunov function only if all subsystems in the
of dynamical subsystems [23], [24]. In many cases, intern@letwork are guaranteed to be ISS by supply rates. To deal

dynamics of subsystems and connecting channels are subjggh non-ISS subsystems, the sum-type construction
to various types of saturation mechanism. The notion of

integral input-to-state stability (iISS) covers such asslaf V(z) =Y Wi(Vi(z:)) (2)
dynamics [26]. The notion of input-to-state stability (0SS ¢

meanwhile, requires more stable dynamics which producéss been successful [7], [11]. Such construction has been
bounded state for arbitrary magnitude of input [25]. The 1S®xplicitly shown in [12] for networks under a small-gain
small-gain theorem establishes stability of interconeéct criterion. ISS networks are covered as a special case. How-
systems if “large” nonlinear gain of one subsystem is comever, the small-gain criterion developed there is not gedgi
pensated by “small” nonlinear gain of the other subsystefidentical with the ones developed for ISS networks. Indeed,
[15], [29]. Even if the number of subsystems is more thaeven for ISS networks, the formulation f&f of subsystems
two, the idea still remains valid [5], [16], [18], [6], [4]1[], .

[30]. Due to the conservation principle underlying natural Vi < —ai(Vi(w)) + ZU%J’(VJ’(%)) ®)
dynamics of systems, saturated energy decrease in onepart i J

balanced by saturated energy increase in another partrUnéenployed in [12] is different from the one

this balance, the existence of a component dissipatingygner .

drives the state of a system into the minimum energy level. Vi < —ai(Vi(wi)) + max 0ij(Vj(x;)) (4)
Therefore, a Iarge-scgle ;:ystem can be stable if a “mor "ssociated with the ISS result [16], [18], [17] of a cyclic
stable subsystem which is 1SS mgkes up for “less _stab all-gain condition. Can we obtain a precise extension
subsystems which are not ISS. This natural observation h81|s

. o . the cyclic small-gain condition, which has been linked
led to the small-gain-type criteria for iISS systems [7}1]i1 with the pair of (4) and (1), to iISS networks even if we

The work is supported in part by Grant-in-Aid for Scientifiesearch replace (1) by (2)? By establishing an affirmative answer to
(B) of JSPS under grant 23360185 and by NSF grant DMS-0906659  this question, this paper achieves the exact generalizafio

H. Ito is with the Department of Systems Design and Informatics ; ; ;
Kyushu Institute of Technology, 680-4 Kawazu, lizuka 82, Japan some central ISS results in the literature. For the maximum

hi r oshi @es. kyut ech. ac. j p. formulation (4) of iISS subsystems, this paper develops
Z.P. Jiang is with the Department of Electrical and Computegifiger- necessary conditions as well as an iISS small-gain criterio

ing, Polytechnic Institute of New York University, Six Metech Center, ; ; i i it HH ;
Brooklyn, NY 11201, USAZ] | ang@ol y. edu. which is a s_ufhment condition for the stability of iISS .
S.N. Dashkovsky is with the Department of Civil En- networks. This paper also demonstrates that the small-gain

gineering, University of Applied Sciences Erfurt, Germany,criterion is equivalently expressed by a matrix-like cdioai

sergey. dashkovskiy@h-erfurt. de. generalizing an ISS result [6], [4]. The allowable number of
B.S. Ruffer is with the Signal and System Theory Group, EIM-E, | b f bili fth K is discd

University of Paderborn, Warburger Str. 100, 33098 PaderbGermany, non-ISS subsystems for stability of the network is discdsse

bj oern@ueffer.info. in terms of some necessary conditions.

I. INTRODUCTION



Throughout this paper, the symbolsand A represent the essentially bounded. Assume that the functfonRV+% —
logical sum and the logical product, respectively. The syinb R” is locally Lipschitz. Let
|z| denotes the Euclidean norm of a real vector R”. A

continuous functiony : R, :=[0,00) — R is said to be 1 " h
positive definite (written asy € P) if it satisfiesy(0) =0 e=| ", r=| "2, f= f;2
and~(s) > 0 holds for all s > 0. A continuous functiomny o e i

is of classK (written asy € K) if v € P and it is strictly n n
increasing; it is of clask ., if it is of classk and unbounded. 2 RN, N =Y N, r e RN K =) K,
We write v € K U {0} to indicate thaty is either of class i=1 i=1

K or the zero function. The symb@l denotes the identity and the network: consists of subsystends; governed by
function onRR, . For a functiony € P, we writey € O(>

L) with a non-negative numbek if there exists a positive Lit = fi(xr,. @), =120 (6)
number K > L such thatlimsup,_,o, v(s)/s* < co. We

write v € O(L) when K = L. Lete; for k = 1,2,...,n be
the standard basis @&". Let I be an index set such thatc

{1,2,...,n}. We denote byP; : R* — R#! the projection of
the coordinates ifR™ corresponding to the indices ihonto
R#*I, where#I is the cardinality of/. The anti-projection
corresponding tdP; is Q; : R#*! — R™ defined asc € R#!

The integern > 2 is the number of subsystems. Instead of
requiring the precise knowledge ¢f, this paper assumes
that a dissipation inequality of each subsystgmis known.
Assumption 1:For eachi = 1,2, ...,n, there exist a pos-
itive definite, radially unbounde@! function V; : RV: —
R4 and continuous functions; € KC, o, j,k; € K U {0}

— (z1e5 +... +$#16i#1) € R", wherex = [z, ...,JJ#]]T such that

and I = {i1,...ixs}. For a mappingd/ : R* — R", we %

use the similar notatiod/; ; := P; o M o Q. For a vector %fi < —ai(Vi(w:))

s € R", we write s; := Py(s). For vectorsa,b € R" the +max{ max o, ;(Vi(z;)), m(lnl)} @)
relationa > b is defined bya; > b; for all i = 1,... n. je{1,2,..,n} ‘

The negation of: > b is denoted by # b, i.e., there exists
ani € {1,...,n} such thata; < b;. The relationa > b is
defined bya; > b; for all i = 1,...,n. The negatioru % b
is the existence of ai € {1,...,n} for which a; < b;

holds. LetR,. denote the set of extended non-negative re i(t). We conS|deraZ, 0ij, i instead off;. The inequality
numbers, i.e R, = 0, OO} The mapping);.; is extended 7) is called a dissipation inequality specifying that each

to R, for M : R — ]R as defined orR™ in the above. subsystem; is integral input-to-state stable (iISS) with
The |nequaI|t|es< and g on R, are extended t@®, with respect to the inputs;;  J # i and " The functionV; is
the conventionse < oo. If ~ is a classK., function, its an ilSS Lyapunov function foE; considered separately [2].
inversey L is of cla_ssICoo. Fory € K\ Koo Oﬁs inverse,y—l Note that a subsystem; prescrib_ed by (7) is guara_nteed to
is defined on the finite intervdD, lim, ..., (7)) since the pe |.nput—tojstate stable (ISS) W'th respect to the Inpyts
continuous functiory is strictly increasing ang(0) = 0. For 7 #¢ andr if and only if Assumption 1 can be satisfied by
+ € K, an operaton®: R, — R, is defined as)®(s) :— a pair (V;, a;) with a; € Ko, [28], [2], [27]. If V; is fixed,
suplv € Ry * 5 > (1)} 1Jchat |s+we have, (s) — oo for the requirement corresponding do € K for 3; to be 1SS

s > lim, .0 (1), andy©(s) = 4 7( 5) elsewhere. For non- can be relaxed intbim;_, o a;(s) = 0o V limg_, o a;(s) >

decreasingw € P, its extensionv: R, — R, is defined as ?mS*D‘iITﬁXt{?ﬁaxje%ﬁ»-ié’g Tirj ES)’ ri(s)}- Itt !st|mp[;)rtzintf h
w(8) 1= SUP,efuer, :w<s) w(v). Using these conventions 0 recal that the set o Systems 1S a strict subset ot the

oy s set of iISS systems [26]. This paper employs the dissipation
o = > . . . . . . .
fer wi v € K, we haveu{ 7@ (f) ,1hmTﬂ°‘>w(T.) for s > inequality (7) in whichmax, defines the interaction of
lim, . v(7). The identityy® = v~* € K holds if and only . T :
. L . subsystems. The interaction could be stated u3ihg(i.e.,
if v € K. Itis important that, in the case ofe K\K,, we N . ;
s = o sum overy) instead ofmax; in (7). The formulation of type
have onlyyo~©(s) < s for s € R, althoughy® o~(s) = . T A :
= o (7) is called maximization aggregation in [6], while the
for s € Ry. Forv,w € KU{C® : ( € K}, yow(s) < s, o . . J
: ; : formulation is called summation aggregation. The summa-
Vs € Ry is equivalent tow o 5(s) < s, Vs € Ry This tion aggregation has been investigated by some preceedin
equivalence also holds foy € KU {¢® : ( € K} and a gareg 9 y b 9

non-decreasing function € P. Due to space limitation, all LefS:llJt;S[]i]e’nEg]'in[3t]f,16[1r?1](;1x[i$nzi]z.al'[3i§r]:|nflgrgmthtehesuch)eIl)I/ cr)?ttehsis
proofs are omitted. Y , g

paper is to construct an iISS Lyapunov functiiiz) of the
II. NETWORK OF ISS SYSTEMS network X with respect to input and stater, and to find a
condition under which such construction is possible. Iis thi
paper the network is said to be 0-GAS if the origin = 0
St i = fla,r), (5) is globally asymptotically stable far(¢) = 0.

Remark 1:Using [28], [2], [27], we can verify that a
wherez(t) € RY is the state vector of, andr(t) € R is  subsystem®; prescribed by (7) is guaranteed to be ISS if
the external input which is assumed to be measurable, yocatind only if there exist3;, xi.;, x; € K (x;; =0) and aC!

holds for allz; € ]RNJ andr; € REi, j =1,2,...,n, where
0,; =0,0=1,2,.
Note thatV; = 8‘/ fi is the time derivative oft; along

Consider the dynamical netwok described by



function V; : RY: — R satisfying the implication

1] > maX{maXXi,.f(m.j|)7 xi<|r|>} L Vi< B,

The characterization (8) for subsystems, referred to as ti?

implication formulation (or the gain margin formulations$,

Theorem 1 for the maximization supply rate (7) is parallel
to the result developed in [10] for the summation supply rate
(3). The difference between them appears in the definition
of S and the constraint on;. This paper relaxes; € K.,
%quired in [10] into (11). The formula (17) of Lyapunov
unctions is referred to as the sum-type construction, twhic

used for ISS networks in [16], [18], [6], [4]. General iilsgWas used for the summation supply rate in [10], [12].

subsystems reject such an implication formulation [2].

Remark 2: The developments in this paper remain vali
even foro; ;70 in (7). It only introduces diagonal elements
[21] in S(s), i.e., loops, which can be considered as cycle
of length one, to the network graph in the next sections.

amounts to requiring the internal gain to be less thdn
This paper employsr;; = 0 so that (7) by itself retains

ISS orilSS of subsystems. For broadened classes of systems

such as retarded systems,; # 0 is useful [17], [13].

IIl. A CHARACTERIZATION BY SUM-TYPE LYAPUNOV
FUNCTIONS

Define A, S, D, A: R} — R’ by

aq (81) max o1, (s;)
As) = 042(.82) S(s) = max 02, (s5)
anp (sn) max on,;j(s5)
51+ 01(s1) A1(s1)

D(s)= | 220 | g = | M)
S+ 6a(s0) An(sn)

wheres = [sy, 89, ...,5,]7 € R?, and \;, §; are auxiliary
functions to be specified below. The operatarsD and A
have the same diagonal structure whileis not diagonal.
Appropriate functions\;, ¢; lead us to a Lyapunov function
of the networkX. The following demonstrates this fact.

Since the maximization and summation supply rates result in

OdifferentS, the operatord\ achieving (14) are different from

each other. As in the summation formulation of supply rates
12], it will be shown in Theorem 5 for the maximization
ﬁ)rmulation of supply rates that the sum-type constructibn

a Lyapunov function (17) is crucial in establishing stdili

of the networks involving non-ISS subsystems.

IV. AN EXPLICIT LYAPUNOV FUNCTION

This section explicitly construct& which yields an ilSS
Lyapunov function of the networkC in Theorem 1. Let the
direct graphG be associated with the netwodk with the
vertex setV(G) and the arc setd(G). The vertices are
subsystems; = 1,2, ...,n. The pair(i,j) is an element of
the arc setd(G) if and only if o; ; # 0. An arc (i,j) is
directed away from thg-th vertex and directed toward the
i-th vertex. Define the weight of the af¢,j) of G as the
function o; ;(s). The weight of the vertex is defined as
oy Ry — R,. As usual, a walk is an alternating sequence
of vertices and connecting arcs, beginning and ending with a
vertex. A walk is a path if it has no repeated vertices. A walk
is a cycle if it starts and ends at the same vertex but otherwis
has no repeated vertices. Given a path or a cycte length
k, we write|U| = k andU = (u(1),u(2), ..., u(k), u(k+1)),
wherew(i)’s are “all” vertices ofU listed in the “reversed”
order of appearance. The starting vertex of the gatls
u(k + 1), and the ending vertex ig(1). If U is a cycle, we
haveu(1) = u(k+1). LetC(G) denote the set of all directed

Theorem 1:Suppose that there exist continuous function§ycle graphs contained in the graph We definef; ; € K

Ai,0; Ry - Ry, i=1,2,....,n, such that

Xi(s) >0, Vse(0,00), i=1,2,..,n 9)
/OO Ai(8)ds = oo, i=1,2,...,n (10)
1
{{aiEICOO A 6GEKS} V liglsolipAi(s)<m},
i=1,2,...,n (11)
Id + 9; € Koo, 1=1,2,...,n (12)
0i(s) >0, Vs € (O,Tlln;o a; (1), i=1,2,..,n (13)
A(s)T[-D'o A(s) + S(s)] <0, VseRT. (14)
ThenX is iISS with respect to input and stater. If
a; € Koo, i=1,2,...n (15)
lisrgggf/\i(s) >0, 1=1,2,...,n (16)

are satisfied additionally, then the netwaikis ISS. Further-
more, an iISS (ISS) Lyapunov function is

n

Z/ Ai(s)ds .
0

i=1

V(z) = (17)

fori,j =1,2,...,n as follows:
Lemma 1:Considera; € K ando; ; € KU{0}, 05, =0,
i,j =1,2,...,n, satisfying

li i(s)= v ol a ii(s) < ,
{SLH;O aj(s)=co v lim _max oi;(s) OO}
ji=1,2,..;n. (18)
Suppose that there exigf > 1, i = 1,2, ...,n such that
e ©
®ou(1) © Cu(1)Tu(1),u(2) © FXyy2)© Cu(2)Tu(2),u(3) © " °
Aoy © Cu(UNTu((U],u(v]+1) (8) < 8, VsE€Ry (19)

holds for all cyclesU € C(G). Let r; be such that

l<m<c, i=1,2..n. (20)
Then there exist; ; € K, i,j=1,2,...,n, satisfying
af ociFi,(s) < s, VseRy, i=1,2,...n (21)
F; (s) > max{  max Figoay otaFy;(s),
aFia#;
0ij(s) ¢, Vs eRy, 1,7=1,2,...,n (22)



lim Fj ;(s) < 0o V also always exist. Indeed, a simple choice/igs) = ... =

500 vn(s) = constant> 0. We are able to replace the linear
lim max{ max Fjgo0 af o 1aFy ;(s), functions¢;s in (19) with nonlinear functions + d;(s) at
S aZiasts the expense of some technical complexity in the formula for

%(3)7} oo, ij=1.2...n (23) M following the idea in [11].
Remark 3:When o; € Ko, i = 1,2,...,n, i.e., all sub-
{lim a;(s)=00 V lim max F;,(s)<oo}, system are ISS, Theorem 1 ensures tHatonstructed as
e S0 ie{l 2 n} j=1,2,...,n. (24) in (17) with (31) is an ISS Lyapunov function af. For
The function F; ; € K is essentially the maximum of networks consisting of ISS subsystems, the condition (19)
nonlinear gain functions defined as the composite mappinés exactly the equivalent variant of the cyclic small-gain
of the alternate sequences of arc and vertex weights alofgndition developed for ISS networks in [16], [18], [6]. The
all walks fromj to i. The condition (19) guarantees that wemaximization supply rate (7) allows us to attain this precis
do not have to evaluate walks which are neither paths néprrespondence. It is stressed that the stability conitio
cycles. If the maximum nonlinear gain function is not styict presented in [12] for the summation supply rates (3) is
increasing, it is replaced by a strictly increasing funetio Not precisely the same as the cyclic small-gain condition
computed with the help of (21). The following theorem(19) (i.e., the one in [16], [18], [6]) even if all subsystem
shows an explicit formula for computing. are ISS. Compared with the result in [12], the small-gain
Theorem 2:Considera; € K ando, ; € KU {0}, 0;; = condition (19) directly uses; and o;; appearing in the
0,14,7 =1,2,...,n, satisfying (18). Suppose that there exissupply rates of subsystems (7). In this paper, neither the
¢; > 1,4 = 1,2,....,n such that (19) holds for all cycles stability criterion (19) nor the construction of the Lyajmm

UcC(G). Let 7; andw > 0 be such that (20) and function V' requires the process of covering the network
graph by subgraphs on which the summation result is based.

(Ti/Ci)w STi—l, 1= 1,2,...,71 (25)
V. MATRIX-LIKE SMALL -GAIN CONDITIONS

are satisfied. Pick clask functions £ ;, 1,j = 1,2,...,n, For networks consisting of ISS subsystems, the studies in
such that (21)-(24) are satisfied (guaranteed by Lemma })q) [17] demonstrated that the cyclic small-gain coruiti
Define classC functionsA;, @ = 1,2, ..., n, by (19) is equivalent to a matrix-like condition. The equivaie

B 1 Y was proved only for the maximization aggregation /of,

Ai(s) = {‘ai(é’)] H [Fa(s)] (26)  nonlinear gains. In the iISS formulation this paper employs

Ti JeV(G)—{i} the network is allowed to have multiple non-ISS subsystems

which lead to the small-gain condition (19) containing sev-

Letwy;: R,4,i=1,2,...,n, be continuous functions ) : : = .
vit (0,00) > Ry, i =1,2,...m erala? which are of neitheC, nor K and involveR ;.. This

fulfilling . ) X : .
section generalizes the equivalence to networks involving
0 <vi(s) <oo, sé€(0,00) (27) non-ISS subsystemmaki@nuse of the maximization supply
lim a;(s) = 0o V lim v;(s) < oo (28) rate (7). Defined® : R, — R, by
e sTee S(a) — [2O © e T n
Xi(s)v;(s) : non-decreasing continuous fee (0,00) (29) AZ(s) = [a7 (s1), a5 (s2), -+ o (sn)]7 s € RL.

Vu(j) © af(j) O Tu()Tu()u(i+1)(8) < Fora; € ICOO,.i =1,2,..,n, we h_averAe(s) = s for all
(Cutren/Tug0)” (uiany = Doy (), S§ R Admiting a; € K\ Ko implies A4 0 A” 7 1d on
Vs € (0,00), j=1,2,...[U] (30) Rx althoughA® o A = Id holds onR . Nevertheless, we
have the following for matrix-like conditions.
for all cyclesU € C(G). Then the non-decreasing continuous Lemma 2:Suppose thaty, € K, 0;; € K U {0} and

functions\; : R, — Ry, i=1,2,...,n, defined by Id+6; € K fori,j =1,2,...,n. Then the following three
M(s) = N(s)mi(s), s€(0,00), i=1,2..n (31) properties aere equivalent to one another:
Xi(0) = lim X;(s)vi(s) (32) A®oDoS(s) 2s, VseRY\{0} (33)
s—0F Do S(s) 2 A(s), VseR%}\ {0} (34)
achieve (9)-(14) withv;(s) = b;s, i = 1,2,...,,n, for some S(s) 2D 'oA(s), Vse R \ {0}. (35)

b; > 0. Moreover, the property (16) holds if (15).

By virtue of Theorem 1, the functio in (17) with
(31) is an iISS Lyapunov function of the netwobk with
input » and statex. The collective condition (19) is a
sufficient condition for the iISS of:. Theorem 2 allows
some subsystems to be non-ISS. It realizes the intuitive idg,© 10 (Xd+ 6,(1)) © Tu(1),u(2)0
of compensating vulnerable subsystems with constraining"( ) ’
subsystems in feedback for the general network topology.
Clearly, the constants;, v fulfilling (20) and (25) always
exist. The functions;, i = 1,2, ...,n, achieving (27)-(30)

The above property allows us to verify the equivalence we
are pursuing for iISS networks.

Proposition 1: Considera; € K, 0; ; € KU{0}, 05, =0
ando; € K, for i,j = 1,2,...,n. Then the inequality

A2y © (Td+ Gy (2)) © Tuz)u(z) © -0
oy © Ad+ 8uu)y) © Tuqu,u(ui+1)(8) < 5,
VseR, \ {0}  (36)



holds for all cyclesV € C(G) if and only if (34) is satisfied. In contrast to the result [19], [22] based on comparison
Notice that there exisi; € K, i = 1,2, ...,n, satisfying systems, this paper establishes the necessity conditibn (4
(36) for all cyclesU € C(G) if and only if there exist for networks defined on the original space mofof a spec-

(possibly different)y; € K, i = 1,2, ...,n, such that ified dimension. By evaluating the limit of (41) towarsb,
lim; 0o S(8)|, _ _. __ 3 lim, oo A(S)|, _ _. __ IS
S) §1=...=8p=T 81=...=8p,=T
O‘u(1)°gd+ Ou(1)) © Tu(1),u(2)® obtained. Thus, we have the following:
Oy0)© (Id+0y(2)) © Tu2),u(z) © -+ 0 Corollary 1: If the networkY is 0-GAS for all ¥ € S,
O‘S(IU\)O (Id+ 6u(u)y) © ouupyuui+1)(8) < s, there exists an integérc {1,2,...,n} such that
VsERy (37) lim a;(s) > lim  max o, ;(s). (42)
s—00 s—o0 je{1,2,...,n}

is satisfied for all cycle® € C(G). Indeed, a strict inequality
< only on (0, o) is obtained from< by replacingd; (s) with
d9i(s)/2. The converse is trivial.

It is worth noting that the property (42) holds if and only
if a subsystem prescribed by (7) is guaranteed to be ISS with
respect to input:; (j # ) for r;(¢t) = 0 [28], [2].
V1. NECESSITYCRITERIA The condition (41) is necessary for the 0-GAS even if
This section develops necessary conditions for stabilidf® Network is decomposed into several blocks. In fact, the
properties of the network given in the maximization for-condition (41) is satisfied only if
muIa_ltion of supply rates (7). Th_e developments _not only [Molvwyvw)(8) 20, Vse RfU \ {0} (43)
confirm that the necessary conditions proved previously for
the summation supply rates [8], [9] can be rewritten for th&0lds for any induced subgragh of G. Here,#U denotes
maximization supply rates, but also highlight a fundamientdhe order of the induced subgraph, i.e., #U = #V(U).
difference. For investigating necessary conditions foe thThe property (43) yields two corollaries.
stability, this section considers “sets” of networks define Corollary 2: Suppose that the netwoBkis 0-GAS for all
by dissipation inequalities of subsystems without looking > € S. If there exists an integere {1,2,...,n} such that
particular “elements” defined by differential equations. oin(s) (44)
Definition 1: Given o; € K, 0, ;,k € KU {0}, 05; = !
0, and positive integers, N;, K; for i,5 = 1,2,...n,
let S(n, N, K., o, 04 4, k) denote the set of networks
consisting of subsystenis;, i = 1,2, ..., n, in the form of lim «a;(s) > lim min
5—00 s—o0 ke{l1,2,....n}\{j}
B = fi(w1,. . on,mi), 2 €RY, r €RE (38)  holds for eachj € {1,2,....n}\ {i}.
1i(0,...,0,0) = 0, f; is locally Lipschitz (39)

lim o;(s) < lim min
ool 5—00 ke{1,2,...,n}\{i}

is satisfied, then

ojk(s) (45)

Therefore, the number of subsystems which are non-ISS

for which there exist positive definite and radially unboedd with respect tanput from every single subsysteannot be

C! functionsV;: RY: — R such that (7) holds for alt; € more than one. It is, however, emphasized that a subsystem

RN andr; e REi| j=1,2,....n. is 1SS with respect to the null input from a disconnected
The Lipschitzness imposed gfj is only for guaranteeing subsystem. Thus, (45) holds if there exists a subsysigm

the existence of a unique maximal solution of the network Wwhich does not feed;, into X;, i.e., o = 0.

For brevity, we writeS instead ofS(n, N, K., c, 0x «, Kx)- Corollary 3: Suppose that the netwobkis 0-GAS for all
All the developments in this section hold true evenNif, X € S. If the directed graph associated withis complete,
... N, and K1, ... , K,, are dropped from the definition there exists at most a single= {1,2,...,n} such that

of S. Allowing N; and K; to be prescribed makes derived . 4 o , ,
necessary conditions better, i.e., the necessity remaies t shfgo oi(s) < sll>nolo oij(5), 7 € {1,2,...n}\ {i}. (46)
with respect to such narrowly specified sets. Throughost thi For setsS which do not form complete graphs, the
section, we assume the following: ~ networkX can be 0-GAS for alE € S even if the number of
Assumption 2:The functionsa;, o;; and ; are contin-  subsystems which are not ISS with respect to each coupling
uously differentiable or{0,c0) and satisfya; € O(1) and  channel can be more than one. Such an example is a cycle
0ij, ki € O(>0) fori,j =1,2,....,n, j #i. network given in Remark 2 of [8].
Define a mapping\/, : R — R™ by We next discuss stability with respect to external signals.
o Theorem 4:1f the network is ISS with respect to input
Mo(s) := —A(s) + S(s). 0 forally e S, then
Then the following can be proved. . . )
. > . =
Theorem 3:If the networkX is 0-GAS for allx € S, then shlgo ai(s) 2 SILHJO Ri(s), 1=1,2,m. (“7)
n This theorem shows that the decay rate of all subsystems
Mo(s) 20, Vs € R%A {0} (41) is necessarily larger than the influence of exogenous signal
The necessary condition (41) in the maximum supply ratir ISS of the overall network. For example,, ..., k, € Koo
formulation (7) is a counterpart of the topological separat requiresa;,...,a, € Ko for the ISS ofX. Although the
condition given in [22], [9] for the summation supply rates.result in [9] corresponding to Theorems 4 is slightly weaker



than (47), the necessity of (47) can be also verified in thef the networkX only if all subsystems fulfillingX € S
summation case. are guaranteed to be ISS. In contrast, as demonstrated in
Now, we try to relate iISS and ISS of the network toSection IV, the sum-type Lyapunov function (2) can ensure

the matrix-like conditions in Section V in view of necessity the stability of the networkC involving non-ISS subsystems.
Define the operatof/ : R} — R™ by Remark 4:Since we allow subsystems to be non-ISS,
_ the condition (41) cannot guarantee 0-GAS of the network

M(s) = =D"" o A(s) + S(s). (48) without additional assumptions. There are pathologicalno
By virtue of Lemma 2, Theorem 3 guarantees the existend®S subsystems for which the no-gap small-gain condition

of continuous functions,, ds, ..., 6, : Ry — R, such that (41) does not imply the 0-GAS [1], [11]. Proposition 2 fails

unless the involved functions are assumed to be unbounded.
Id+ 6, e Koy, i=1,2,...,n (49)

M(s) 20, VseR]\{0}. (50) VIlI. AKEY TO NECESSITYRESULTS

The functionss; in (50) describe the gap between zero and The necessity criteria in Section VI are based on the
the minimum row ofM,. In the summation formulation of existence of subsystems (6) that perfectly fit given supply
supply rates (3), we can verify the necessity of a “gaptates in the maximization formulation (7). The existence of
function §; € K« for securing ISS for allX € S [9]. such subsystems were proved in the summation formulation
It, however, cannot be established in the the maximizatio8) of supply rates in [8]. An important point there was that
formulation (7). The next proposition, which is a sufficientthe subsystems admitting unique trajectories were exiplici
condition, demonstrates this impossibility. constructed on the original state space € RY: with
Proposition 2: Letn = 2. Considery, as, 01,2, 02,1, k1,  arbitrarily “specified” dimensionV; > 0. See Definition 1
k2 € Koo. If (41) holds, the network: is ISS with respect followed by several remarks. The next lemma extends the
to inputr for all ¥ € S. result to the formulation (7) of supply rates.
For i = 1,2, considery; € P satisfyingId+ p; € K Lemma 3:SF‘F’P°SG that functions; € P, o;; € K_U {0,
and limsup, _,__ 11;(s) = 0. Then the functionsy; = (Id+ i € KU {0}, .5 =1,2,...n, real numbers) > 0, & > 0
pi)o s, i=1,2, fulfill (41). However, the condition (50) 2nd integers\; >0, K; > 0, n > 0 are given. Assume
is not satisfied if a function; is of classiC... Therefore, thatai oi; ands; are of classC- on (Q’ co) and satisfy
Proposition 2 shows that the existence of a functipa K., @ € 9(1) and gij, ki € O(> 0) for 4,5 = 1,2, ..n. Let
is not always necessary for guaranteeing ISS fo>a#t S N_::NZ;;(:J Ni. ;\;hen th(_are eX|_st_IocaIIy L'p.SCh'tZ functions
defined with (7), which contrasts sharply with the case ofci'lR = R_ I'J\?OS'“VG definite and radially unbominded
summation supply rates (3) discussed in [9]. Recall thag iIsC functionsV;: R — R, and a real number; € [0, €],
is weaker than ISS and stronger than 0-GAS. The above 1,2,...,n, such that

example suggests that necessary conditions for iISS whic%(O 0) = (52)
are more specific than (41) can be pursued only on a casg’ "’
by case basis in the maximization supply rates. in(w%) < —o; (Vi(xy))
It can be proved that (18) is necessary for constructing adxi
sum-type iISS Lyapunov function of the netwo¥k unless + max{je{rlngf T%ij(‘/j(xj)), 'ii(|7“z‘|)}»
we restrict the influence of disturbances o vz e RN, r; € RE: (53)

Proposition 3: Suppose that there exist continuously dif- ()
ferentiableWV; € K., i = 1,2...,n, such thatl” defined by ; xl_
(2) is an iISS Lyapunov function with respect to inpuand

statex for all ¥ € S. If limg_ o0 ;(8) < limg_, o0 Ki(8) IS = ﬁfi(m,ri) < %fi(j, 7:) (54)

satisfied fori = 1,2, ..., n, then the property (18) holds. O; Oz;

. The constraint (1.8) can be_ .replaced _by a milder condition (1 4 5) o, (V; (x;)) §Inax{ max o;;(V;(z;)), Hz‘(|7‘z'|)}

if we do not consider stability of. with respect to the je{1,2,...,n}

external signat (see [1], [11] forn = 2). € < Vi(z;)) V ;=0
Finally, we demonstrate the advantage of using the sum<; < [ri| V 7, =0

type Lyapunov function (2) over the max-type one (1). = %fi(x,m) > 5;a(Vi(z:))  (55)
Theorem 5:For a functionV in the form of (1), let O

Ve°(x;x) denote the Clarke generalized derivativezatn
the direction ofz. If there exist continuously differentiable
W; € Koo, © = 1,2...,n, such that all¥ € S satisfy
Ve(z;2) <0 for all z € RY with r(¢) =0, then

hold, wherexr = [zT, 21, ..., 2117 € RY andz; € RV,

This lemma is proved by partially modifying the argument
used for the summation case [8], and incorporating the
exogenous signat; into f;. The above lemma establishes
lim a;(s) > lim  max o;,(s), i=1,2,..,n. (51) the property (54) which is absent in [8]. Subsystehs
s §700 jELL2,n} achieving (52)-(55) can be constructed as follows: Rick
Property (51) in Theorem 5 implies that the max-typd, b > 0 andL > 1 such thaty; € O(p) ando;; € O(b) hold

Lyapunov function (1) is capable of establishing stabilityfor i,5 = 1,2,...,n, and (1/Lp) + (1/Lb) < 1. Let @ > 1



be such thatk; € O(Lb/Q). Defines;;(s) = o;;(s") and
ooy ) okie) (ki(s)/ki(e)?,  forse[0,e)
i) { ki(s), for s € [e;, 00). 2]

In the case ofp > 1, let&; : Ry — R4 andg > 1 be
such thate (|z;|") = a;(|z|)|a;|"? and (1/p) + (1/q) = 1. B
Define V;(z;) = |x;|* and

—(q(1+4)+p) 4l

(1]

fi(fl?vri)lz Iy &i(|ai]) | |7/ 9
. 5
+ 7 a1+ )l N
1/q 6]

for i=1,2,...,n. Then (52)-(55) are fulfilled for; =0. In [l
thep = 1 case, picke; €0, €;]. Choosep € (1,2] andg > 1
such that(1/Lp)+(1/Lb) < 1 and(1/p)+(1/q) = 1. Using  [8l

aAi(|xi|L) :CAVAZ(|(L'Z|)|SU1|L7 CVAi(S) :{{01’ EL}Oéz(S)a se [O,Ei) [9]

SE [€;,00)
. 5 i i» SE|0, € (10]

agi(|zi|") =api(|zi]) || 7 OéBi(S):{Z?(SVE sse [‘E[i oeo%
we can achieve (52)-(55) by;(z;) = |z;|* and (11]

oy =@ +D) o L
fz - T aAz(‘xszz + Lﬁ aBz(|xz|)‘xz| X [12]

+ 7 a1+ S)am(lai)} /7

[13]

1/q

q max max  7;;(|x;|), Ri(|r; T;.
{amax{ _max o500 mani | y
VIII. CONCLUDING REMARKS [15]

In this paper, necessary and sufficient conditions ha\f%]
been developed for internal and external stability of nekso
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