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Abstract— This paper considers nonlinear dynamical net-
works consisting of individually iISS (integral input-to-state
stable) subsystems which are not necessarily ISS (input-to-state
stable). Stability criteria for internal and external stability of the
networks are developed in view of both necessity and sufficiency.
For the sufficiency, we show how we can construct a Lyapunov
function of the network explicitly under the assumption that
a cyclic small-gain condition is satisfied. The cyclic small-
gain condition is shown to be equivalent to a matrix-like
condition. The two conditions and their equivalence precisely
generalize some central ISS results in the literature. Moreover,
the necessity of the matrix-like condition is established. The
allowable number of non-ISS subsystems for stability of the
network is discussed through several necessity conditions.

I. I NTRODUCTION

Networks we often encounter in the diverse fields of sci-
ence, technology, business and management are aggregations
of dynamical subsystems [23], [24]. In many cases, internal
dynamics of subsystems and connecting channels are subject
to various types of saturation mechanism. The notion of
integral input-to-state stability (iISS) covers such a class of
dynamics [26]. The notion of input-to-state stability (ISS),
meanwhile, requires more stable dynamics which produces
bounded state for arbitrary magnitude of input [25]. The ISS
small-gain theorem establishes stability of interconnected
systems if “large” nonlinear gain of one subsystem is com-
pensated by “small” nonlinear gain of the other subsystem
[15], [29]. Even if the number of subsystems is more than
two, the idea still remains valid [5], [16], [18], [6], [4], [17],
[30]. Due to the conservation principle underlying natural
dynamics of systems, saturated energy decrease in one part is
balanced by saturated energy increase in another part. Under
this balance, the existence of a component dissipating energy
drives the state of a system into the minimum energy level.
Therefore, a large-scale system can be stable if a “more”
stable subsystem which is ISS makes up for “less“ stable
subsystems which are not ISS. This natural observation has
led to the small-gain-type criteria for iISS systems [7], [11],
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[1]. Very recently, the observation has been extended to
networks without any restriction on network graph topology
through explicit construction of a Lyapunov function [12].

The small-gain theorem for iISS networks is basically a
generalization of previous developments for ISS networks.
However, there remain gaps between the iISS and ISS cases,
and so far no exhaustive explanation of the differences has
been provided. Most of Lyapunov-based studies on ISS
small-gain criteria have employed the max-type construction
of a Lyapunov functionV for a network as

V (x) = max
i
Wi(Vi(xi)), (1)

which is the weighted maximum of Lyapunov functionsVi of
individual subsystems [14], [16], [18], [6], [4]. Weights are
Wi. It has been proved in [10] that the max-type construction
(1) yields a Lyapunov function only if all subsystems in the
network are guaranteed to be ISS by supply rates. To deal
with non-ISS subsystems, the sum-type construction

V (x) =
∑

i

Wi(Vi(xi)) (2)

has been successful [7], [11]. Such construction has been
explicitly shown in [12] for networks under a small-gain
criterion. ISS networks are covered as a special case. How-
ever, the small-gain criterion developed there is not precisely
identical with the ones developed for ISS networks. Indeed,
even for ISS networks, the formulation forVi of subsystems

V̇i ≤ −αi(Vi(xi)) +
∑

j

σi,j(Vj(xj)) (3)

employed in [12] is different from the one

V̇i ≤ −αi(Vi(xi)) + max
j
σi,j(Vj(xj)) (4)

associated with the ISS result [16], [18], [17] of a cyclic
small-gain condition. Can we obtain a precise extension
of the cyclic small-gain condition, which has been linked
with the pair of (4) and (1), to iISS networks even if we
replace (1) by (2)? By establishing an affirmative answer to
this question, this paper achieves the exact generalization of
some central ISS results in the literature. For the maximum
formulation (4) of iISS subsystems, this paper develops
necessary conditions as well as an iISS small-gain criterion
which is a sufficient condition for the stability of iISS
networks. This paper also demonstrates that the small-gain
criterion is equivalently expressed by a matrix-like condition
generalizing an ISS result [6], [4]. The allowable number of
non-ISS subsystems for stability of the network is discussed
in terms of some necessary conditions.



Throughout this paper, the symbols∨ and∧ represent the
logical sum and the logical product, respectively. The symbol
|x| denotes the Euclidean norm of a real vectorx∈R

n. A
continuous functionγ : R+ := [0,∞) → R+ is said to be
positive definite (written asγ ∈ P) if it satisfiesγ(0) = 0
and γ(s) > 0 holds for all s > 0. A continuous functionγ
is of classK (written asγ ∈ K) if γ ∈ P and it is strictly
increasing; it is of classK∞ if it is of classK and unbounded.
We write γ ∈ K ∪ {0} to indicate thatγ is either of class
K or the zero function. The symbolId denotes the identity
function onR+. For a functionγ ∈ P, we write γ ∈ O(>
L) with a non-negative numberL if there exists a positive
numberK > L such thatlim sups→0+ γ(s)/s

K <∞. We
write γ ∈O(L) whenK =L. Let ek for k = 1, 2, ..., n be
the standard basis ofR

n. Let I be an index set such thatI ⊂
{1, 2, ..., n}. We denote byPI : R

n → R
#I the projection of

the coordinates inRn corresponding to the indices inI onto
R#I , where#I is the cardinality ofI. The anti-projection
corresponding toPI is QI : R

#I → R
n defined asx ∈ R

#I

7→ (x1ei1 + . . .+ x#Iei#I
) ∈ R

n, wherex = [x1, ..., x#I ]
T

and I = {i1, ...i#I}. For a mappingM : R
n → R

n, we
use the similar notationMI,J := PI ◦M ◦QJ . For a vector
s ∈ R

n, we write sI := PI(s). For vectorsa, b ∈ R
n the

relation a ≥ b is defined byai ≥ bi for all i = 1, . . . , n.
The negation ofa ≥ b is denoted bya 6≥ b, i.e., there exists
an i ∈ {1, . . . , n} such thatai < bi. The relationa ≫ b is
defined byai > bi for all i = 1, . . . , n. The negationa 6≫ b
is the existence of ani ∈ {1, . . . , n} for which ai ≤ bi
holds. LetR+ denote the set of extended non-negative real
numbers, i.e.,R+ := [0,∞]. The mappingMI,J is extended
to R+ for M : R

n

+ → R
n

+ as defined onRn+ in the above.
The inequalities< and≤ on R+ are extended toR+ with
the convention∞ ≤ ∞. If γ is a classK∞ function, its
inverseγ−1 is of classK∞. Forγ ∈ K\K∞, its inverseγ−1

is defined on the finite interval[0, limτ→∞ γ(τ)) since the
continuous functionγ is strictly increasing andγ(0) = 0. For
γ ∈ K, an operatorγ⊖: R+ → R+ is defined asγ⊖(s) :=
sup{v ∈ R+ : s ≥ γ(v)}. That is, we haveγ⊖(s) = ∞ for
s ≥ limτ→∞ γ(τ), andγ⊖(s) = γ−1(s) elsewhere. For non-
decreasingω ∈ P, its extensionω: R+ → R+ is defined as
ω(s) := supv∈{w∈R+ :w≤s} ω(v). Using these conventions
for ω, γ ∈ K, we haveω ◦ γ⊖(s) = limτ→∞ ω(τ) for s ≥
limτ→∞ γ(τ). The identityγ⊖ = γ−1 ∈ K holds if and only
if γ ∈ K∞. It is important that, in the case ofγ ∈ K\K∞, we
have onlyγ ◦γ⊖(s) ≤ s for s ∈ R+ althoughγ⊖ ◦γ(s) = s
for s ∈ R+. For γ, ω ∈ K ∪ {ζ⊖ : ζ ∈ K}, γ ◦ ω(s) ≤ s,
∀s ∈ R+ is equivalent toω ◦ γ(s) ≤ s, ∀s ∈ R+. This
equivalence also holds forγ ∈ K ∪ {ζ⊖ : ζ ∈ K} and a
non-decreasing functionω ∈ P. Due to space limitation, all
proofs are omitted.

II. N ETWORK OF IISS SYSTEMS

Consider the dynamical networkΣ described by

Σ : ẋ = f(x, r), (5)

wherex(t) ∈ R
N is the state vector ofΣ, andr(t) ∈ R

K is
the external input which is assumed to be measurable, locally

essentially bounded. Assume that the functionf : R
N+K →

R
N is locally Lipschitz. Let

x =







x1
x2...
xn






, r =







r1
r2...
rn






, f =







f1
f2...
fn







xi ∈ R
Ni , N =

n
∑

i=1

Ni, ri ∈ R
Ki , K =

n
∑

i=1

Ki

and the networkΣ consists of subsystemsΣi governed by

Σi : ẋi = fi(x1, . . . , xn, ri), i = 1, 2, ..., n. (6)

The integern ≥ 2 is the number of subsystems. Instead of
requiring the precise knowledge offi, this paper assumes
that a dissipation inequality of each subsystemΣi is known.

Assumption 1:For eachi = 1, 2, ..., n, there exist a pos-
itive definite, radially unboundedC1 function Vi : R

Ni →
R+ and continuous functionsαi ∈ K, σi,j , κi ∈ K ∪ {0}
such that

∂Vi
∂xi

fi ≤ −αi(Vi(xi))

+ max

{

max
j∈{1,2,...,n}

σi,j(Vj(xj)), κi(|ri|)

}

(7)

holds for allxj ∈ R
Nj andrj ∈ R

Kj , j = 1, 2, ..., n, where
σi,i ≡ 0, i = 1, 2, ..., n.

Note thatV̇i = ∂Vi

∂xi
fi is the time derivative ofVi along

xi(t). We considerαi, σi,j , κi instead offi. The inequality
(7) is called a dissipation inequality specifying that each
subsystemΣi is integral input-to-state stable (iISS) with
respect to the inputsxj , j 6= i and r. The functionVi is
an iISS Lyapunov function forΣi considered separately [2].
Note that a subsystemΣi prescribed by (7) is guaranteed to
be input-to-state stable (ISS) with respect to the inputsxj ,
j 6= i and r if and only if Assumption 1 can be satisfied by
a pair (Vi, αi) with αi ∈ K∞ [28], [2], [27]. If Vi is fixed,
the requirement corresponding toαi ∈ K∞ for Σi to be ISS
can be relaxed intolims→∞ αi(s) = ∞ ∨ lims→∞ αi(s) ≥
lims→∞ max{maxj∈{1,2,...,n} σi,j(s), κi(s)}. It is important
to recall that the set of ISS systems is a strict subset of the
set of iISS systems [26]. This paper employs the dissipation
inequality (7) in which maxj defines the interaction of
subsystems. The interaction could be stated using

∑

j (i.e.,
sum overj) instead ofmaxj in (7). The formulation of type
(7) is called maximization aggregation in [6], while the

∑

j

formulation is called summation aggregation. The summa-
tion aggregation has been investigated by some preceeding
results [12], [9], [3], [10], [22]. Defining the supply rates
of subsystems in the maximization form, the goal of this
paper is to construct an iISS Lyapunov functionV (x) of the
networkΣ with respect to inputr and statex, and to find a
condition under which such construction is possible. In this
paper the networkΣ is said to be 0-GAS if the originx = 0
is globally asymptotically stable forr(t) ≡ 0.

Remark 1:Using [28], [2], [27], we can verify that a
subsystemΣi prescribed by (7) is guaranteed to be ISS if
and only if there existβi, χi,j , χi ∈ K (χi,i=0) and aC
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function Vi : R
Ni → R+ satisfying the implication

|xi| ≥ max

{

max
j
χi,j(|xj |), χi(|r|)

}

⇒ V̇i ≤ −βi(|xi|).
(8)

The characterization (8) for subsystems, referred to as the
implication formulation (or the gain margin formulation),is
used for ISS networks in [16], [18], [6], [4]. General iISS
subsystems reject such an implication formulation [2].

Remark 2:The developments in this paper remain valid
even forσi,i 6=0 in (7). It only introduces diagonal elements
[21] in S(s), i.e., loops, which can be considered as cycles
of length one, to the network graph in the next sections. It
amounts to requiring the internal gain to be less thanId.
This paper employsσi,i = 0 so that (7) by itself retains
ISS or iISS of subsystems. For broadened classes of systems
such as retarded systems,σi,i 6= 0 is useful [17], [13].

III. A C HARACTERIZATION BY SUM-TYPE LYAPUNOV

FUNCTIONS

DefineA,S,D,Λ: R
n
+ → R

n
+ by

A(s) =









α1(s1)
α2(s2)

...
αn(sn)









, S(s) =









max
j

σ1,j(sj)

max
j

σ2,j(sj)...
max

j
σn,j(sj)









D(s) =









s1 + δ1(s1)
s2 + δ2(s2)...
sn + δn(sn)









, Λ(s) =









λ1(s1)
λ2(s2)...
λn(sn)









,

where s = [s1, s2, ..., sn]
T ∈ R

n
+, and λi, δi are auxiliary

functions to be specified below. The operatorsA, D andΛ
have the same diagonal structure whileS is not diagonal.
Appropriate functionsλi, δi lead us to a Lyapunov function
of the networkΣ. The following demonstrates this fact.

Theorem 1:Suppose that there exist continuous functions
λi, δi : R+ → R+, i = 1, 2, ..., n, such that

λi(s) > 0, ∀s ∈ (0,∞), i = 1, 2, ..., n (9)
∫ ∞

1

λi(s)ds = ∞, i = 1, 2, ..., n (10)
{

{αi∈K∞ ∧ δi∈K∞} ∨ lim sup
s→∞

λi(s)<∞
}

,

i = 1, 2, ..., n (11)

Id + δi ∈ K∞, i = 1, 2, ..., n (12)

δi(s) > 0, ∀s ∈ (0, lim
τ→∞

αi(τ)), i = 1, 2, ..., n (13)

Λ(s)T [−D−1◦A(s) + S(s)] ≤ 0, ∀s ∈ R
n
+. (14)

ThenΣ is iISS with respect to inputr and statex. If

αi ∈ K∞, i = 1, 2, ..., n (15)

lim inf
s→∞

λi(s) > 0, i = 1, 2, ..., n (16)

are satisfied additionally, then the networkΣ is ISS. Further-
more, an iISS (ISS) Lyapunov function is

V (x) =

n
∑

i=1

∫ Vi(xi)

0

λi(s)ds . (17)

Theorem 1 for the maximization supply rate (7) is parallel
to the result developed in [10] for the summation supply rate
(3). The difference between them appears in the definition
of S and the constraint onδi. This paper relaxesδi ∈ K∞

required in [10] into (11). The formula (17) of Lyapunov
functions is referred to as the sum-type construction, which
was used for the summation supply rate in [10], [12].
Since the maximization and summation supply rates result in
differentS, the operatorsΛ achieving (14) are different from
each other. As in the summation formulation of supply rates
[12], it will be shown in Theorem 5 for the maximization
formulation of supply rates that the sum-type constructionof
a Lyapunov function (17) is crucial in establishing stability
of the networks involving non-ISS subsystems.

IV. A N EXPLICIT LYAPUNOV FUNCTION

This section explicitly constructsΛ which yields an iISS
Lyapunov function of the networkΣ in Theorem 1. Let the
direct graphG be associated with the networkΣ with the
vertex setV(G) and the arc setA(G). The vertices are
subsystems,i = 1, 2, ..., n. The pair(i, j) is an element of
the arc setA(G) if and only if σi,j 6= 0. An arc (i, j) is
directed away from thej-th vertex and directed toward the
i-th vertex. Define the weight of the arc(i, j) of G as the
function σi,j(s). The weight of the vertexi is defined as
α⊖
i : R+ → R+. As usual, a walk is an alternating sequence

of vertices and connecting arcs, beginning and ending with a
vertex. A walk is a path if it has no repeated vertices. A walk
is a cycle if it starts and ends at the same vertex but otherwise
has no repeated vertices. Given a path or a cycleU of length
k, we write|U | = k andU = (u(1), u(2), ..., u(k), u(k+1)),
whereu(i)’s are “all” vertices ofU listed in the “reversed”
order of appearance. The starting vertex of the pathU is
u(k+ 1), and the ending vertex isu(1). If U is a cycle, we
haveu(1) = u(k+1). Let C(G) denote the set of all directed
cycle graphs contained in the graphG. We defineFi,j ∈ K
for i, j = 1, 2, ..., n as follows:

Lemma 1:Considerαi ∈ K andσi,j ∈ K∪{0}, σi,i = 0,
i, j = 1, 2, ..., n, satisfying
{

lim
s→∞

αj(s)=∞ ∨ lim
s→∞

max
i∈{1,2,...,n}

σi,j(s)<∞

}

,

j = 1, 2, ..., n. (18)

Suppose that there existci > 1, i = 1, 2, ..., n such that

α⊖
u(1)◦ cu(1)σu(1),u(2) ◦ α

⊖
u(2)◦ cu(2)σu(2),u(3) ◦ · · · ◦

α⊖
u(|U |)◦ cu(|U |)σu(|U |),u(|U |+1)(s) ≤ s, ∀s∈R+ (19)

holds for all cyclesU ∈ C(G). Let τi be such that

1 < τi < ci, i = 1, 2, ..., n. (20)

Then there existFi,j ∈ K, i, j=1, 2, ..., n, satisfying

α⊖
i ◦ ciFi,i(s) ≤ s, ∀s∈R+, i=1, 2, ..., n (21)

Fi,j(s) ≥ max

{

max
1 ≤ q ≤ n

q 6= i,q 6= j

Fi,q ◦ α
⊖
q ◦ τqFq,j(s),

σi,j(s)

}

, ∀s ∈ R+, i, j=1, 2, ..., n (22)



lim
s→∞

Fi,j(s) <∞ ∨

lim
s→∞

max

{

max
1 ≤ q ≤ n

q 6= i,q 6= j

Fi,q ◦ α
⊖
q ◦ τqFq,j(s),

σi,j(s),

}

= ∞, i, j = 1, 2, ..., n (23)

{ lim
s→∞

αj(s)=∞ ∨ lim
s→∞

max
i∈{1,2,...,n}

Fi,j(s)<∞},

j=1, 2, ..., n. (24)
The functionFi,j ∈ K is essentially the maximum of

nonlinear gain functions defined as the composite mappings
of the alternate sequences of arc and vertex weights along
all walks fromj to i. The condition (19) guarantees that we
do not have to evaluate walks which are neither paths nor
cycles. If the maximum nonlinear gain function is not strictly
increasing, it is replaced by a strictly increasing function
computed with the help of (21). The following theorem
shows an explicit formula for computingΛ.

Theorem 2:Considerαi ∈ K andσi,j ∈ K ∪ {0}, σi,i =
0, i, j = 1, 2, ..., n, satisfying (18). Suppose that there exist
ci > 1, i = 1, 2, ..., n such that (19) holds for all cycles
U ∈C(G). Let τi andψ ≥ 0 be such that (20) and

(τi/ci)
ψ ≤ τi − 1, i = 1, 2, ..., n (25)

are satisfied. Pick classK functionsFi,j , i, j = 1, 2, ..., n,
such that (21)-(24) are satisfied (guaranteed by Lemma 1).
Define classK functionsλi, i = 1, 2, ..., n, by

λi(s) =

[

1

τi
αi(s)

]ψ
∏

j∈V(G)−{i}

[Fj,i(s)]
ψ+1

. (26)

Let νi: (0,∞) → R+, i = 1, 2, ..., n, be continuous functions
fulfilling

0 < νi(s) <∞, s ∈ (0,∞) (27)

lim
s→∞

αi(s) = ∞ ∨ lim
s→∞

νi(s) <∞ (28)

λ̄i(s)νi(s) : non-decreasing continuous fors∈(0,∞) (29)

νu(j) ◦ α
⊖
u(j) ◦ τu(j)σu(j),u(j+1)(s) ≤

(cu(j+1)/τu(j+1))
ψ(τu(j+1) − 1)νu(j+1)(s),

∀s ∈ (0,∞), j = 1, 2, ..., |U | (30)

for all cyclesU ∈ C(G). Then the non-decreasing continuous
functionsλi : R+ → R+, i = 1, 2, ..., n, defined by

λi(s) = λi(s)νi(s), s ∈ (0,∞), i = 1, 2, ..., n (31)

λi(0) = lim
s→0+

λi(s)νi(s) (32)

achieve (9)-(14) withδi(s) = bis, i = 1, 2, ..., n, for some
bi > 0. Moreover, the property (16) holds if (15).

By virtue of Theorem 1, the functionV in (17) with
(31) is an iISS Lyapunov function of the networkΣ with
input r and statex. The collective condition (19) is a
sufficient condition for the iISS ofΣ. Theorem 2 allows
some subsystems to be non-ISS. It realizes the intuitive idea
of compensating vulnerable subsystems with constraining
subsystems in feedback for the general network topology.
Clearly, the constantsτi, ψ fulfilling (20) and (25) always
exist. The functionsνi, i = 1, 2, ..., n, achieving (27)-(30)

also always exist. Indeed, a simple choice isν1(s) = ... =
νn(s) = constant> 0. We are able to replace the linear
functions cis in (19) with nonlinear functionss + δi(s) at
the expense of some technical complexity in the formula for
λi following the idea in [11].

Remark 3:When αi ∈ K∞, i = 1, 2, ..., n, i.e., all sub-
system are ISS, Theorem 1 ensures thatV constructed as
in (17) with (31) is an ISS Lyapunov function ofΣ. For
networks consisting of ISS subsystems, the condition (19)
is exactly the equivalent variant of the cyclic small-gain
condition developed for ISS networks in [16], [18], [6]. The
maximization supply rate (7) allows us to attain this precise
correspondence. It is stressed that the stability condition
presented in [12] for the summation supply rates (3) is
not precisely the same as the cyclic small-gain condition
(19) (i.e., the one in [16], [18], [6]) even if all subsystem
are ISS. Compared with the result in [12], the small-gain
condition (19) directly usesαi and σi,j appearing in the
supply rates of subsystems (7). In this paper, neither the
stability criterion (19) nor the construction of the Lyapunov
function V requires the process of covering the network
graph by subgraphs on which the summation result is based.

V. M ATRIX -L IKE SMALL -GAIN CONDITIONS

For networks consisting of ISS subsystems, the studies in
[20], [17] demonstrated that the cyclic small-gain condition
(19) is equivalent to a matrix-like condition. The equivalence
was proved only for the maximization aggregation ofK∞

nonlinear gains. In the iISS formulation this paper employs,
the network is allowed to have multiple non-ISS subsystems
which lead to the small-gain condition (19) containing sev-
eralα⊖

i which are of neitherK∞ norK and involveR+. This
section generalizes the equivalence to networks involving
non-ISS subsystems making use of the maximization supply
rate (7). DefineA⊖ : R

n

+ → R
n

+ by

A⊖(s) = [α⊖
1 (s1), α

⊖
2 (s2), · · · , α

⊖
n (sn)]

T , s ∈ R
n
+.

For αi ∈ K∞, i = 1, 2, ..., n, we haveA ◦A⊖(s) = s for all
s ∈ R

n
+. Admitting αi ∈ K \ K∞ impliesA ◦ A⊖ 6= Id on

R
n

+ althoughA⊖ ◦ A = Id holds onR
n

+. Nevertheless, we
have the following for matrix-like conditions.

Lemma 2:Suppose thatαi ∈ K, σi,j ∈ K ∪ {0} and
Id+ δi ∈ K∞ for i, j = 1, 2, ..., n. Then the following three
properties are equivalent to one another:

A⊖ ◦D ◦ S(s) 6≥ s, ∀s ∈ R
n
+ \ {0} (33)

D ◦ S(s) 6≥ A(s), ∀s ∈ R
n
+ \ {0} (34)

S(s) 6≥ D−1 ◦A(s), ∀s ∈ R
n
+ \ {0}. (35)

The above property allows us to verify the equivalence we
are pursuing for iISS networks.

Proposition 1: Considerαi ∈ K, σi,j ∈ K∪{0}, σi,i = 0
andδi ∈ K∞ for i, j = 1, 2, ..., n. Then the inequality

α⊖
u(1)◦ (Id+ δu(1)) ◦ σu(1),u(2)◦

α⊖
u(2)◦ (Id+ δu(2)) ◦ σu(2),u(3) ◦ · · · ◦

α⊖
u(|U |)◦ (Id+ δu(|U |)) ◦ σu(|U |),u(|U |+1)(s) < s,

∀s∈R+ \ {0} (36)



holds for all cyclesU ∈ C(G) if and only if (34) is satisfied.
Notice that there existδi ∈ K∞, i = 1, 2, ..., n, satisfying

(36) for all cyclesU ∈ C(G) if and only if there exist
(possibly different)δi ∈ K∞, i = 1, 2, ..., n, such that

α⊖
u(1)◦ (Id+ δu(1)) ◦ σu(1),u(2)◦

α⊖
u(2)◦ (Id+ δu(2)) ◦ σu(2),u(3) ◦ · · · ◦

α⊖
u(|U |)◦ (Id+ δu(|U |)) ◦ σu(|U |),u(|U |+1)(s) ≤ s,

∀s∈R+ (37)

is satisfied for all cyclesU ∈ C(G). Indeed, a strict inequality
< only on(0,∞) is obtained from≤ by replacingδi(s) with
δi(s)/2. The converse is trivial.

VI. N ECESSITYCRITERIA

This section develops necessary conditions for stability
properties of the network given in the maximization for-
mulation of supply rates (7). The developments not only
confirm that the necessary conditions proved previously for
the summation supply rates [8], [9] can be rewritten for the
maximization supply rates, but also highlight a fundamental
difference. For investigating necessary conditions for the
stability, this section considers “sets” of networks defined
by dissipation inequalities of subsystems without lookingat
particular “elements” defined by differential equations.

Definition 1: Given αi ∈ K, σi,j , κ ∈ K ∪ {0}, σi,i =
0, and positive integersn, Ni, Ki for i, j = 1, 2, ..., n,
let S(n,N∗,K∗, α∗, σ∗,∗, κ∗) denote the set of networksΣ
consisting of subsystemsΣi, i = 1, 2, ..., n, in the form of

ẋi = fi(x1, . . . , xn, ri), xi∈R
Ni , ri∈R

Ki (38)

fi(0, ..., 0, 0) = 0, fi is locally Lipschitz (39)

for which there exist positive definite and radially unbounded
C

1 functionsVi: R
Ni → R such that (7) holds for allxj ∈

R
Nj andrj ∈ R

Kj , j = 1, 2, ..., n.
The Lipschitzness imposed onfi is only for guaranteeing

the existence of a unique maximal solution of the networkΣ.
For brevity, we writeS instead ofS(n,N∗,K∗, α∗, σ∗,∗, κ∗).
All the developments in this section hold true even ifN1,
..., Nn and K1, ... , Kn are dropped from the definition
of S. Allowing Ni andKi to be prescribed makes derived
necessary conditions better, i.e., the necessity remains true
with respect to such narrowly specified sets. Throughout this
section, we assume the following:

Assumption 2:The functionsαi, σi,j and κi are contin-
uously differentiable on(0,∞) and satisfyαi ∈ O(1) and
σi,j , κi ∈ O(>0) for i, j = 1, 2, ..., n, j 6= i.

Define a mappingM0 : R
n
+ → R

n by

M0(s) := −A(s) + S(s). (40)

Then the following can be proved.
Theorem 3:If the networkΣ is 0-GAS for allΣ∈S, then

M0(s) 6≥ 0, ∀s ∈ R
n
+ \ {0}. (41)

The necessary condition (41) in the maximum supply rate
formulation (7) is a counterpart of the topological separation
condition given in [22], [9] for the summation supply rates.

In contrast to the result [19], [22] based on comparison
systems, this paper establishes the necessity condition (41)
for networks defined on the original space ofx of a spec-
ified dimension. By evaluating the limit of (41) toward∞,
limτ→∞ S(s)|s1=...=sn=τ 6≫ limτ→∞ A(s)|s1=...=sn=τ is
obtained. Thus, we have the following:

Corollary 1: If the networkΣ is 0-GAS for all Σ ∈ S,
there exists an integeri ∈ {1, 2, ..., n} such that

lim
s→∞

αi(s) ≥ lim
s→∞

max
j∈{1,2,...,n}

σi,j(s). (42)

It is worth noting that the property (42) holds if and only
if a subsystem prescribed by (7) is guaranteed to be ISS with
respect to inputxj (j 6= i) for ri(t) ≡ 0 [28], [2].

The condition (41) is necessary for the 0-GAS even if
the network is decomposed into several blocks. In fact, the
condition (41) is satisfied only if

[M0]V(U),V(U)(ŝ) 6≥ 0, ∀ŝ ∈ R
#U
+ \ {0} (43)

holds for any induced subgraphU of G. Here,#U denotes
the order of the induced subgraphU , i.e., #U = #V(U).
The property (43) yields two corollaries.

Corollary 2: Suppose that the networkΣ is 0-GAS for all
Σ ∈ S. If there exists an integeri ∈ {1, 2, ..., n} such that

lim
s→∞

αi(s) < lim
s→∞

min
k∈{1,2,...,n}\{i}

σik(s) (44)

is satisfied, then

lim
s→∞

αj(s) ≥ lim
s→∞

min
k∈{1,2,...,n}\{j}

σjk(s) (45)

holds for eachj ∈ {1, 2, ..., n} \ {i}.

Therefore, the number of subsystems which are non-ISS
with respect toinput from every single subsystemcannot be
more than one. It is, however, emphasized that a subsystem
is ISS with respect to the null input from a disconnected
subsystem. Thus, (45) holds if there exists a subsystemΣk
which does not feedxk into Σj , i.e., σjk = 0.

Corollary 3: Suppose that the networkΣ is 0-GAS for all
Σ ∈ S. If the directed graph associated withS is complete,
there exists at most a singlei ∈ {1, 2, ..., n} such that

lim
s→∞

αi(s) < lim
s→∞

σij(s), j ∈ {1, 2, ..., n} \ {i} . (46)

For setsS which do not form complete graphs, the
networkΣ can be 0-GAS for allΣ ∈ S even if the number of
subsystems which are not ISS with respect to each coupling
channel can be more than one. Such an example is a cycle
network given in Remark 2 of [8].

We next discuss stability with respect to external signals.
Theorem 4:If the networkΣ is ISS with respect to input

r for all Σ ∈ S, then

lim
s→∞

αi(s) ≥ lim
s→∞

κi(s), i = 1, 2, ..., n. (47)

This theorem shows that the decay rate of all subsystems
is necessarily larger than the influence of exogenous signals
for ISS of the overall network. For example,κ1, ..., κn∈K∞

requiresα1, ..., αn ∈ K∞ for the ISS ofΣ. Although the
result in [9] corresponding to Theorems 4 is slightly weaker



than (47), the necessity of (47) can be also verified in the
summation case.

Now, we try to relate iISS and ISS of the network to
the matrix-like conditions in Section V in view of necessity.
Define the operatorM : R

n
+ → R

n by

M(s) := −D−1 ◦A(s) + S(s). (48)

By virtue of Lemma 2, Theorem 3 guarantees the existence
of continuous functionsδ1, δ2, ..., δn : R+ → R+ such that

Id + δi ∈ K∞, i = 1, 2, ..., n (49)

M(s) 6≥ 0, ∀s ∈ R
n
+ \ {0}. (50)

The functionsδi in (50) describe the gap between zero and
the minimum row ofM0. In the summation formulation of
supply rates (3), we can verify the necessity of a “gap”
function δi ∈ K∞ for securing ISS for allΣ ∈ S [9].
It, however, cannot be established in the the maximization
formulation (7). The next proposition, which is a sufficient
condition, demonstrates this impossibility.

Proposition 2: Let n = 2. Considerα1, α2, σ1,2, σ2,1, κ1,
κ2 ∈ K∞. If (41) holds, the networkΣ is ISS with respect
to input r for all Σ ∈ S.

For i = 1, 2, considerµi ∈ P satisfying Id+µi ∈ K∞

and lim sups→∞ µi(s) = 0. Then the functionsαi = (Id+
µi)◦σ3−i,i, i=1, 2, fulfill (41). However, the condition (50)
is not satisfied if a functionδi is of classK∞. Therefore,
Proposition 2 shows that the existence of a functionδi ∈ K∞

is not always necessary for guaranteeing ISS for allΣ ∈ S
defined with (7), which contrasts sharply with the case of
summation supply rates (3) discussed in [9]. Recall that iISS
is weaker than ISS and stronger than 0-GAS. The above
example suggests that necessary conditions for iISS which
are more specific than (41) can be pursued only on a case
by case basis in the maximization supply rates.

It can be proved that (18) is necessary for constructing a
sum-type iISS Lyapunov function of the networkΣ unless
we restrict the influence of disturbancesr.

Proposition 3: Suppose that there exist continuously dif-
ferentiableWi ∈ K∞, i = 1, 2..., n, such thatV defined by
(2) is an iISS Lyapunov function with respect to inputr and
statex for all Σ ∈ S. If lims→∞ αi(s) ≤ lims→∞ κi(s) is
satisfied fori = 1, 2, ..., n, then the property (18) holds.

The constraint (18) can be replaced by a milder condition
if we do not consider stability ofΣ with respect to the
external signalr (see [1], [11] forn = 2).

Finally, we demonstrate the advantage of using the sum-
type Lyapunov function (2) over the max-type one (1).

Theorem 5:For a function V in the form of (1), let
V ◦(x; ẋ) denote the Clarke generalized derivative atx in
the direction ofẋ. If there exist continuously differentiable
Wi ∈ K∞, i = 1, 2..., n, such that allΣ ∈ S satisfy
V ◦(x; ẋ) ≤ 0 for all x ∈ R

N with r(t) ≡ 0, then

lim
s→∞

αi(s) ≥ lim
s→∞

max
j∈{1,2,...,n}

σi,j(s), i = 1, 2, ..., n. (51)

Property (51) in Theorem 5 implies that the max-type
Lyapunov function (1) is capable of establishing stability

of the networkΣ only if all subsystems fulfillingΣ ∈ S
are guaranteed to be ISS. In contrast, as demonstrated in
Section IV, the sum-type Lyapunov function (2) can ensure
the stability of the networkΣ involving non-ISS subsystems.

Remark 4:Since we allow subsystems to be non-ISS,
the condition (41) cannot guarantee 0-GAS of the network
without additional assumptions. There are pathological non-
ISS subsystems for which the no-gap small-gain condition
(41) does not imply the 0-GAS [1], [11]. Proposition 2 fails
unless the involved functions are assumed to be unbounded.

VII. A K EY TO NECESSITYRESULTS

The necessity criteria in Section VI are based on the
existence of subsystems (6) that perfectly fit given supply
rates in the maximization formulation (7). The existence of
such subsystems were proved in the summation formulation
(3) of supply rates in [8]. An important point there was that
the subsystems admitting unique trajectories were explicitly
constructed on the original state spacexi ∈ R

Ni with
arbitrarily “specified” dimensionNi > 0. See Definition 1
followed by several remarks. The next lemma extends the
result to the formulation (7) of supply rates.

Lemma 3:Suppose that functionsαi ∈ P, σij ∈ K∪{0},
κi ∈ K ∪ {0}, i, j = 1, 2, ...n, real numbersδ ≥ 0, ǭi > 0
and integersNi > 0, Ki > 0,, n > 0 are given. Assume
that αi, σij and κi are of classC1 on (0,∞) and satisfy
αi ∈ O(1) and σij , κi ∈ O(> 0) for i, j = 1, 2, ...n. Let
N :=

∑n
i=1Ni. Then there exist locally Lipschitz functions

fi: R
N+Ki → R

Ni , positive definite and radially unbounded
C

1 functionsVi: R
Ni → R, and a real numberǫi ∈ [0, ǭi],

i = 1, 2, ..., n, such that

fi(0, 0) = 0 (52)
∂Vi
∂xi

fi(x, ri)≤ −αi(Vi(xi))

+ max

{

max
j∈{1,2,...,n}

σij(Vj(xj)), κi(|ri|)

}

,

∀x ∈ R
N , ri ∈ R

Ki (53)

Vi(xi) = Vi(xi), |ri| ≤ |ri|
Vj(xj) ≤ Vj(xj), ∀j 6= i

}

⇒
∂Vi
∂xi

fi(x, ri) ≤
∂Vi
∂xi

fi(x, ri) (54)

(1+δ)αi(Vi(xi))≤max

{

max
j∈{1,2,...,n}

σij(Vj(xj)), κi(|ri|)

}

ǫi ≤ Vi(xi) ∨ xi = 0

ǫi ≤ |ri| ∨ ri = 0















⇒
∂Vi
∂xi

fi(x, ri) ≥ δiα(Vi(xi)) (55)

hold, wherex = [xT1 , x
T
2 , ..., x

T
n ]T ∈ R

N andxi ∈ R
Ni .

This lemma is proved by partially modifying the argument
used for the summation case [8], and incorporating the
exogenous signalri into fi. The above lemma establishes
the property (54) which is absent in [8]. SubsystemsΣi
achieving (52)-(55) can be constructed as follows: Pickp ≥
1, b > 0 andL > 1 such thatαi ∈ O(p) andσij ∈ O(b) hold
for i, j = 1, 2, ..., n, and (1/Lp) + (1/Lb) < 1. Let Q ≥ 1



be such thatκi ∈ O(Lb/Q). Define σ̆ij(s) = σij(s
L) and

κ̆i(s) =

{

κi(ǫi) (κi(s)/κi(ǫi))
Q
, for s ∈ [0, ǫi)

κi(s), for s ∈ [ǫi,∞).

In the case ofp > 1, let α̂i : R+ → R+ and q > 1 be
such thatαi(|xi|L) = α̂i(|xi|)|xi|

Lp and(1/p)+ (1/q) = 1.
DefineVi(xi) = |xi|

L and

fi(x, ri) =
−(q(1+δ)+p)

Lp
α̂i(|xi|)|xi|

Lp/qxi

+
1

L
{q(1 + δ)α̂i(|xi|)}

1/p
·

{

qmax

{

max
j∈{1,2,...,n}

σ̆ij(|xj |), κ̆i(|ri|)

}}1/q

xi

for i= 1, 2, ..., n. Then (52)-(55) are fulfilled forǫi = 0. In
the p = 1 case, pickǫi∈ [0, ǭi]. Choosep̃ ∈ (1, 2] andq > 1
such that(1/Lp̃)+(1/Lb) < 1 and(1/p̃)+(1/q) = 1. Using

αAi(|xi|
L)= α̂Ai(|xi|)|xi|

L, αAi(s)=

{{

1− s
ǫ i

}

αi(s),s∈ [0,ǫi)
0, s∈ [ǫi,∞)

αBi(|xi|
L)= α̂Bi(|xi|)|xi|

Lp̃, αBi(s)=

{

sαi(s)/ǫi, s∈ [0, ǫi)
αi(s), s∈ [ǫi,∞)

we can achieve (52)-(55) byVi(xi) = |xi|
L and

fi =
−1

L
α̂Ai(|xi|)xi +

−(q(1+δ)+p̃)

Lp̃
α̂Bi(|xi|)|xi|

Lp̃/qxi

+
1

L
{q(1 + δ)α̂Bi(|xi|)}

1/p̃
·

{

qmax

{

max
j∈{1,2,...,n}

σ̆ij(|xj |), κ̆i(|ri|)

}}1/q

xi.

VIII. C ONCLUDING REMARKS

In this paper, necessary and sufficient conditions have
been developed for internal and external stability of networks
whose subsystems are not necessarily ISS. Subsystems are
formulated with supply rates taking the maximum of cou-
pling signals (4). To the best of the authors’ knowledge, the
maximization supply rates have not been employed in the
previously available stability criteria for iISS networks. The
previous result [12] proposing an iISS small-gain criterion
and a construction of Lyapunov functions of networks was
based on the summation formulation of supply rates for
subsystems (3). Taking the maximum formulation of supply
rates, this paper has shown the two points regarding sufficient
conditions: 1) The step of covering by subgraphs on which
the previous result in [12] relies can be removed; 2) The
small-gain criterion is equivalently expressed by matrix-like
conditions generalizing an ISS result [6]. Note that, as in
the ISS case [20], [17], [4], Item 2 has been achieved
only for the maximum formulation of iISS supply rates.
Necessary conditions have also been obtained for the stability
of iISS network defined with the maximum supply rates: A)
The necessity results are parallel to the previous results for
summation supply rates [8], [9], [10]; B) The maximization
involving external signals brings in a fundamental difference
in the required small-gain margin.

All results in this paper can be repeated for the formulation
which replaces{αi(Vi(xi)), σi,j(Vj(xj))} andαi ∈ O(1) in
(7) with {αi(|xi|), σi,j(|xj |)} andαi ∈ O(> 1).
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