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Abstract— Separable Lyapunov functions play vital roles, for
example, in stability analysis of large-scale systems. A Lyapunov
function is called max-separable if it can be decomposed into
a maximum of functions with one-dimensional arguments.
Similarly, it is called sum-separable if it is a sum of such
functions. In this paper it is shown that for a monotone system
on a compact state space, asymptotic stability implies existence
of a max-separable Lyapunov function. We also construct two
systems on a non-compact state space, for which a max-
separable Lyapunov function does not exist. One of them has
a sum-separable Lyapunov function. The other does not.

I. INTRODUCTION

A system of differential equations is called monotone
if a partial order relationship between initial conditions is
preserved by the dynamics. For systems on Rn+ = [0,∞)n

that are monotone with respect to the component-wise partial
order on Rn, two types of Lyapunov functions have been of
interest in the recent literature on the stability analysis of
large-scale interconnected nonlinear systems. These are the
max-separable Lyapunov function

V (x) = max
i=1,...,n

Vi(xi), (1)

e.g., in [1] and the sum-separable Lyapunov function

V (x) =

n∑
i=1

Vi(xi), (2)

e.g., in [2], [3], [7]. The Lyapunov functions (1) and (2) are
also of recent interest in decentralized control, see [4], [5].

Roughly speaking and by way of an example, separable
Lyapunov functions appear in the construction of Lyapunov
functions for composite systems. In applications such a
composite system appears as an interconnection of many
stable subsystem. There it is usually assumed that every such
subsystem is endowed with a suitable Lyapunov function that
quantifies the subsystem’s stability with respect to input from
other subsystems. More precisely, one could assume that
every subsystem is input-to-state stable (ISS) with an ISS
Lyapunov function Vi. For this case it was shown, e.g., in
[1], that under suitable conditions V (x) = maxi σi

(
Vi(xi)

)
is a Lyapunov function for the composite system, where the
functions σi are appropriate scaling functions. Clearly, this
composite Lyapunov function is of the form (1).
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However, when subsystems are allowed to satisfy relaxed
stability assumptions, e.g, they are only assumed to be
integral input-to-state stable (iISS), then it was found that
the same construction from [1] does not necessarily work.
Instead, a construction based on (2) has been used success-
fully at different occasions.

Both of these constructions are related to monotone sys-
tems, as the respective stability conditions for large-scale
systems can always be translated into a stability condition
on a lower-dimensional, monotone comparison system [6],
[7].

A natural question thus is: If Lyapunov functions of
the form (2) can seem to handle “more general” types of
interconnections of stable subsystems, is the set of monotone
(comparison) systems admitting such a Lyapunov function
bigger than the class of systems only admitting a Lyapunov
function of the form (1)?

In this work we show that for an asymptotically stable,
monotone system on a compact state space there always
exists a max-separable Lyapunov function. Furthermore, we
show that the compactness assumption is indeed essential for
this construction, by giving a simple example of a system
with non-compact state-space for which no max-separable
Lyapunov function exists. We also construct a system (on
a non-compact state-space) that neither has a max-separable
nor a sum-separable Lyapunov function.

The paper is organized as follows: First we give precise
definitions of what we mean by a monotone system, partial
order, asymptotic stability, etc. Then in Section III we present
our main result, namely the aforementioned construction of
max-separable Lyapunov functions. The counter-examples
are given in Section IV.

II. NOTATION

We consider Rn equipped with the component-wise partial
order, which we denote by x ≤ y if xi ≤ yi for all i,
x < y if x ≤ y but x 6= y, and x � y if xi < yi for
all i. A map F : Rn → Rn is monotone if x ≤ y implies
F (x) ≤ F (y). For a partially ordered set A we denote by
A+ := {a ∈ A : a ≥ 0}.

In this work we consider systems of the form

ẋ = f(x) (3)

with f : Rn+ → Rn locally Lipschitz and f(0) = 0. This
guarantees local existence and uniqueness of solutions. Asso-
ciated with this system is the flow map ϕ : R+×Rn+ → Rn+,
which satisfies ϕ(t, ϕ(s, x)) = ϕ(t + s, x) and ϕ(0, x) = x
for all t, s ∈ R+ and x ∈ Rn+.



Throughout this paper we will assume that system (3) is
monotone, i.e., x ≤ y implies ϕ(t, x) ≤ ϕ(t, y) for all t ∈
R+. This holds if and only if f satisfies the Kamke-Müller
conditions, cf. [8],

x ≤ y and xi = yi =⇒ fi(x) ≤ fi(y). (4)

Note that existence and uniqueness of solutions dictates
that at least for points x� 0 the flow map ϕ(t, x) can also
be evaluated for small negative times.

The origin is asymptotically stable if it is attractive and
stable in the sense of Lyapunov. It is globally asymptotically
stable (GAS) if it is asymptotically stable and its region of
attraction is the entire Rn+.

III. SEPARABLE LYAPUNOV FUNCTIONS

Our main result shows that one can always find a max-
separable Lyapunov function on compact sets.

Theorem 1: Let (3) be a monotone system so that the
origin is globally asymptotically stable. Suppose that the
system leaves the compact set X ⊂ Rn+ invariant. Then
there exist strictly increasing functions Vk : R+ → R+ for
k = 1, . . . , n such that V (x) = max{V1(x1), . . . , Vn(xn)}
satisfies

d

dt
V (ϕ(t, x0)) = −V (ϕ(t, x0))

for all x0 ∈ X , x0 � 0.

Remark 1. If a compact set X is not invariant to begin with,
then one can consider instead the invariant set

Y :=
⋃
t≥0

ϕ(t,X).

Proof. Define xk := 1 + sup{xk : x ∈ X}. Then, due to
monotonicity of the system we have for all x ∈ X that

0 ≤ max
k

ϕk(t, x) ≤ max
k

ϕk(t, x) −→ 0 as t→∞

where ϕk(t, x) denotes the kth component of ϕ(t, x). For
x ∈ X define

Tk(xk) := max
{
τ : xk ≤ ϕk(t, x) for all t ∈ [0, τ ]

}
T (x) := max

{
τ : x ≤ ϕ(t, x) for all t ∈ [0, τ ]

}
where xk and ϕk(t, x) denote the kth components of x and
ϕ(t, x). Then T (x) = min{T1(x1), . . . , Tn(xn)}. It follows
from compactness of X and global asymptotic stability of
x = 0 that T (x) is finite for all x ∈ X with x 6= 0. Moreover

T (ϕ(ε, x))

= max
{
τ : ϕ(ε, x) ≤ ϕ(t, x) for all 0 ≤ t ≤ τ

}
= max

{
τ : ϕ(ε, x) ≤ ϕ(t, x) for all ε ≤ t ≤ τ

}
= max

{
τ : ϕ(ε, x) ≤ ϕ(t+ ε, x) for all 0 ≤ t ≤ τ − ε

}
≥ max

{
τ : x ≤ ϕ(t, x) for all 0 ≤ t ≤ τ − ε

}
= ε+ T (x)

The inequality is due to monotonicity of the dynamics. This
shows that the map t 7→ T (ϕ(t, x)) is a strictly increasing

function of t. We will prove the desired properties for the
functions

Vk(z) := e−Tk(z), k = 1, . . . , n

where k = 1, . . . , n. First notice that Vk is strictly decreasing
due to the definition of Tk. Define ε such that 0 < ε < T (x)
for all x ∈ X . With

V (x) := max
{
V1(x1), . . . , Vn(xn)

}
= e−T (x)

it follows for x ∈ X that It follows that

d

dt
V (ϕ(t, x))

∣∣∣
t=0

= −e−T (ϕ(t,x)) d

dt
T (ϕ(t, x))

∣∣∣
t=0

≤ −e−T (ϕ(t,x))
∣∣∣
t=0

= −V (x).

We note that V is by construction positive and strictly
decreasing along trajectories. This completes the proof. �

The reasoning of the previous theorem does not work for
an arbitrary monotone system with globally asymptotically
stable origin, as we will see in the examples of Section IV-A.
However, the following result holds.

Corollary 1: Let (3) be a monotone system so that the
origin globally asymptotically stable. Suppose the there is a
trajectory ϕ(t) ∈ Rn+ such that

• ϕ(t) is defined for all forward and backward times;
• limt→∞ ϕ(t) = 0 and limt→−∞ ϕk(t) =∞ for all k.

Then there exists a max-separable Lyapunov function.

Proof. The proof is essentially the same as the construction
given in the proof of Theorem 1. First we let

Tk(xk) := max{τ : xk ≤ ϕk(t) for all t ∈ [0, τ ]}
T (x) := max{τ : x ≤ ϕ(t) for all t ∈ [0, τ ]}

for k = 1, . . . , n. Again T (x) = mink Tk(xk) and we define

V (x) := e−T (x) = max
k

e−Tk(xk) =: max
k

Vk(xk).

Observe that V (x) → ∞ as ‖x‖ → ∞. The remainder of
the proof is the same as for Theorem 1. �

IV. EXAMPLES

The following two examples demonstrate that compactness
of the state-space is indeed crucial for the existence of
separable Lyapunov functions. In both cases the origin is
globally asymptotically stable on Rn+.

A. A system with a sum-separable Lyapunov function that
does not exhibit a max-separable Lyapunov function

Consider the system

d

dt

(
x
y

)
=

(
− x

1+x + y

−y

)
=: f(x, y). (5)

The right-hand side is locally Lipschitz continuous, satisfies
f(0, 0) = 0, as well as the Kamke-Müller conditions (4).



Hence (5) defines a monotone system on R2
+. Figure 1 shows

how the state space is divided into two regions,

Rupper =
{
x ∈ R2

+ : x > 0, y >
x

1 + x

}
Rlower =

{
x ∈ R2

+ : x > 0, 0 < y <
x

1 + x

}
,

separated by the dashed line. In the upper region trajectories
increase in the first component, while they decrease in the
second component. Eventually, they enter the lower region,
where both components decrease ad infinitum towards the
origin. The shown trajectory is representative for all tra-
jectories passing through Rupper. Clearly, none of them is
unbounded in both components in backward-time. Hence,
no trajectory as in Corollary 1 can be used to dominate all
points in Rn+ and the construction of that corollary fails.

Next we show, that there is no “other” max-separable
Lyapunov function either. By way of contradiction assume
that there is a V (x, y) = max{V1(x), V2(y)}. We may
assume that Vi, i = 1, 2, are of class K∞ and are hence
differentiable almost everywhere. Consider the sequence
zn = (n, 2)T , n ≥ 1. There must be some N ≥ 1 such
that for all n ≥ N we have V (zn) = V1(zn1 ). Observe that
V ′1(s) = d

dsV1(s) ≥ 0 wherever the derivative exists. But
now we have, for n ≥ N and at points of differentiability
zn, that

V̇ = V ′1(zn)f1(zn)

= V ′1(zn)

(
2− n

1 + n

)
≥ 0.

The same argument would work along any other horizontal
line above Rlower, so we can actually show that V̇ ≥ 0
on a set of positive measure. This, however, contradicts the
fact that V is supposed to be Lyapunov function. Hence,
this system does not admit any max-separable Lyapunov
function.

Now consider the C1 function V (x, y) = x+ 2y. On R2
+

it is positive definite and radially unbounded. The system
is globally asymptotically stable. We have V̇ = ẋ + 2ẏ =
− x

1+x − y < 0 for all x > 0 and y > 0. So V must be a
Lyapunov function, and very clearly it is sum-separable. This
establishes that the origin is globally asymptotically stable.

B. A system that does not exhibit a sum-separable nor a
max-separable Lyapunov function

Our second example shows that for non-compact state-
space a sum-separable Lyapunov function does not need to
exist either.

1) Preliminary step: Consider the following two-
dimensional (preliminary) system on R+ × R+:

ẋ = y2

y2+1 − x =: f̂(x, y)

ẏ = x− 2y2

y2+1 =: ĝ(x, y)

(6)

Clearly, if x > y2

y2+1 then f̂(x, y) < 0 and if x < 2y2

y2+1

then ĝ(x, y) < 0. Thus, for y2

y2+1 < x < 2y2

y2+1 one has
f̂(x, y) < 0 and ĝ(x, y) < 0, as depicted in Figure 2.
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Fig. 1. Sign patterns of the right-hand side of system (5) given in
Section IV-A. Although the system is GAS, it does not admit a global
max-separable Lyapunov function. The simple reason is that no trajectory
is unbounded in all components in backward-time.
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Fig. 2. Sign patterns of the right-hand side of system (6) given in
Section IV-B and two representative trajectories. Although the system is
GAS, it does not admit a global sum-separable Lyapunov function.

Now, assume that for (6) there exists a strict global
Lyapunov function of the form

L(x, y) = V (x) + U(y), (7)

i.e., L is supposed to be differentiable (not necessarily
continuously differentiable) on R+ × R+ and has to satisfy
the condition

L̇(x, y) := V ′(x)f̂(x, y) + U ′(y)ĝ(x, y) < 0 (8)

for all (x, y) ∈ R+×R+ \{(0, 0)}, where V ′ and U ′ denote
the ordinary derivative of V and U , respectively.

2) Step 1: Now, we pass from (6) to the following system

ẋ = f(x, y)

ẏ = g(x, y)
(9)

where f equals f̂ and g has the same sign pattern as ĝ, yet a
different limit behaviour. More precisely, there should exist



0 < x∗ < 1 and x∗ > 2 such that

lim
y→∞

g(x∗, y) = 0 and lim
y→∞

g(x∗, y) =∞.

3) Claim: If there exists a map g with the above properties
then (9) does not admit a Lyapunov function of the form (7).

Proof. Assume that (9) has a Lyapunov function of the form
(7). This, however, would imply the following (contradictory)
limit behaviour for U ′(y):

(a) On the one hand, the inequality

L̇(x∗, y) = V ′(x∗)︸ ︷︷ ︸
>0

f(x∗, y) + U ′(y)︸ ︷︷ ︸
>0

g(x∗, y)︸ ︷︷ ︸
<0

< 0

implies limy→∞ U ′(y) = ∞ because
limy→∞ f(x∗, y) = 1 − x∗ > 0 and
limy→∞ g(x∗, y) = 0.

(b) On the other hand, the inequality

L̇(x∗, y) = V ′(x∗)︸ ︷︷ ︸
>0

f(x∗, y)︸ ︷︷ ︸
<0

+U ′(y)︸ ︷︷ ︸
>0

g(x∗, y)︸ ︷︷ ︸
>0

< 0

implies limy→∞ U ′(y) = 0 because
limy→∞ f(x∗, y) = 1 − x∗ < 0 and
limy→∞ g(x∗, y) =∞.

�

Thus, once we have shown that such a map g does exist
we have also proved that (9) does not admit a Lyapunov
function of the form L = V + U .

4) Step 2: Here, we explicitly “construct” a map g which
satisfies the above requirements. Choose differentiable, pos-
itive definite functions α : R+ → R+ and β : R+ → R+

such that

lim
y→∞

α(y) = 0, lim
y→∞

β(y) =∞, and

lim
y→∞

α(y)eλβ(y) =∞
(10)

for some suitable λ > 0. Then, define g : R+ ×R+ → R as
follows

g(x, y) := α(y)
(

e
β(y)
(
x− 2y2

y2−1

)
−1
)

= α(y)
(

eβ(y)ĝ(x,y)−1
)
.

Obviously, g has the same sign pattern as ĝ. Moreover, for
x∗ < 2 and x∗ := 2+λ one has the following limit behaviour

lim
y→∞

g(x∗, y) = lim
y→∞

−α(y) = 0 and

lim
y→∞

g(x∗, y) = lim
y→∞

α(y)eβ(y)
(
x∗−2

)
=∞.

5) Step 3: Finally, we have to choose α and β such that
(9) is monotone and asymptotically stable.

Monotonicity All we have to check is that ∂f
∂y and ∂g

∂x are
non-negative. Indeed, we find

∂f

∂y
(x, y) =

2y(y2 + 1)− 2y3

(y2 + 1)2
=

2y

(y2 + 1)2
≥ 0

and
∂g

∂x
(x, y) = α(y)β(y)e

β(y)
(
x− 2y2

y2−1

)
> 0.

Thus (9) defines a monotone system on R+×R+, whenever
α and β are strictly positive.

Asymptotic stability First, the forward invariance of R+×
R+ under the flow of (9) follows straightforwardly by
inspection of the vector field (f, g) on the x- and y-axis.
Moreover, there are obviously no other equilibria in R+×R+

than (0, 0). To prove global asymptotic stability of (0, 0), it
suffices to show that all solutions of (9) eventually reach the
set

Γ− :={(x, y) ∈ R+ × R+ | f(x, y) < 0 and g(x, y) < 0}

={(x, y) ∈ R+ × R+ | y2

y2+1 < x < 2y2

y2+1},

because Γ− is forward invariant under the flow of (9) and
admits L(x, y) := x + y as Lyapunov function. Due to the
sign pattern of f and g, the “attractiveness” of Γ− is easily
established once one can guarantee that the vector field (f, g)
is complete (no finite escape time). Therefore, one has to
choose α and β in a moderate way, e.g.

α(y) :=
(

ln(y + c)
)−1

and β(y) := ln
(

ln(y + c)
)

with c > e. Then clearly the first two limit conditions of
(10) are satisfied. Moreover, for any λ > 1 (and thus for any
x∗ > 3) one has

lim
y→∞

α(y)eλβ(y) = lim
y→∞

(
ln(y + c)

)−1
eλ ln

(
ln(y+c)

)
= lim
y→∞

(
ln(y + c)

)λ−1
=∞.

Now with the above choice of α and β we can prove that
Γ− is “attractive”. To this end, define

Γ−f := {(x, y) ∈ R+ × R+ | f(x, y) < 0}

= {(x, y) ∈ R+ × R+ | y2

y2+1 < x}

and

Γ−g := {(x, y) ∈ R+ × R+ | g(x, y) < 0}

= {(x, y) ∈ R+ × R+ | x < 2y2

y2+1}

Case 1: Let (x0, y0) ∈ Γ−f \ Γ−. Then, Γ−f (x0) := Γ−f ∩
{(x, y) ∈ R+×R+ | x ≤ x0} is forward invariant under the
flow of (9). This follows easily from the behaviour of the
vector field (f, g) on the boundary of Γ−f (x0). On Γ−f (x0),
we can estimate g as follows

|g(x, y)| ≤
∣∣∣α(y)

(
e
β(y)
(
x− 2y2

y2−1

)
− 1
)∣∣∣

≤
∣∣ ln(y + c)

∣∣x +
∣∣ ln(y + c)

∣∣−1
≤
∣∣ ln(y + c)

∣∣−1 +
∣∣ ln(y + c)

∣∣x0

≤
∣∣ ln(y + c)

∣∣−1 + C(y1/x0)x0 ≤ C ′y
with appropriate constants C > 0 and C ′ > 0. Therefore,
finite escape time phenomena can be excluded by a standard
Gronwall type estimate. Hence, any solution starting in Γ−f
has to reach eventually Γ−.

Case 2: Let (x0, y0) ∈ Γ−g \ Γ−. Then, Γ−g (y0) := Γ−g ∩
{(x, y) ∈ R+ ×R+ | y ≤ y0} is forward invariant under the
flow of (9). Since Γ−g (y0) is also bounded the corresponding
solution does exist for all t > 0.



6) Step 4: Finally, from Figure 2 and the reasoning in
Section IV-A it is clear that this system does not have a
max-separable Lyapunov function either.

V. CONCLUSION

This work has shown that globally asymptotically stable
monotone systems always have a max-separable Lyapunov
function on every compact invariant set. Counter-examples
have been provided to show that the compactness assumption
is essential.
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