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Abstract: Stability analysis of complex and large-scale systems is often aided by some form of model reduction,
ideally down to a one-dimensional system via a Lyapunov function. In this context comparison principles arise
very naturally. If the comparison system can be shown to be monotone, then an extension of a homotopical
fixed point algorithm can be used to verify practical quasi-global asymptotic stability of the composite nominal
system. This method is applied to a class of nonlinear examples.
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1 Introduction

Stability analysis and decentralized control of large-
scale or compartmental systems has a long history, see
e.g. [16] for a 40 year old survey article on the sub-
ject or the textbooks [5, 8, 17]. Recent advances in
nonlinear stability theory with concepts like input-to-
state stability (ISS) [19] and its various relatives have
called for an extension of classical large-scale results
to these more general frameworks, where systems par-
ticipating in interconnections may satisfy only weak
stability properties like integral-input-to-state stability
(iISS), see e.g. [4].

The past two decades have also seen the emergence
of numerical methods that can aid in the stability anal-
ysis of interconnected systems, most notably efficient
solvers for linear matrix inequalities (LMI), that to-
gether with integral quadratic constraints (IQC) [2, 7]
and sum of squares (SOS) relaxation [11] provide pow-
erful tools to aid this type of analysis.

An alternative, analytical approach is that of com-
parison principles, vector Lyapunov functions, and gen-
eralized small-gain conditions [1, 4, 5, 8, 9, 10, 13, 14,
15, 17]. Motivated by a lack of computational tools
associated with this approach for inherently nonlinear
problems, here we explain how effective algorithms can
be used to verify stability properties of large-scale sys-
tems via comparison principles. This provides a large-
scale stability criterion which is not only of a theoreti-
cal nature, but also particularly suited for applications:
First of all, it deals with practical and quasi-global sta-
bility, which is of greater generality than “pure” global
stability concepts and hence of wider applicability in
applications. Secondly, the approach provides a numer-
ical scheme to check the stability condition, a promis-
ing development that aligns applicability of comparison
principles with IQC and LMI approaches.

In this paper we first recall some facts about mono-
tone systems that will be subsequently utilized for com-
parison systems. Then we define the class of large-scale
systems in Section 3 together with corresponding com-
parison systems. Sections 4 and 5 introduce the quasi-

global practical stability concepts, state a stability cri-
terion, and then formulate an algorithm that can be
used for numerical stability verification. A numerical
example is briefly discussed in Section 6.

2 Preliminaries
Here we provide a rather informal recollection of a

number of facts about monotone systems from a range
of references [5, 15, 18], along with appropriate nota-
tion used throughout. The set R+ denotes the non-
negative real numbers, so Rn

+ is the positive orthant in
Rn, and it defines the following component-wise par-
tial order: Vectors v, y ∈ Rn are ordered by v ≤ y if
y−v ∈ Rn

+, v � y if y−v ∈ intRn
+, where intA denotes

the interior of a set A, and v < y if v ≤ y and v 6= y.
Consider an autonomous, continuous-time, and

possibly nonlinear dynamical system that evolves on
Rn

+,
v̇ = g(v). (1)

Assume that g is locally Lipschitz, so that solutions
exist and are unique.
Assumption 2.1 The function g is quasi-monotone
nondecreasing, which is the same as “ type K,” i.e.,
for all v, y ∈ Rn

+ and all i ∈ {1, . . . , n}, gi(v) ≤ gi(y),
whenever v ≤ y and vi = yi.
Assumption 2.2 The origin is attractive with respect
to (1) with basin of attraction B.

Under Assumptions 2.1 and 2.2 the following im-
plications hold:

1. It holds that g(v) � 0 for all v ∈ B, v 6= 0.

2. The set Ω := {v ∈ Rn
+ : g(v) � 0} satisfies that

for all r > 0 sufficiently small, Ω∩ Sr 6= ∅, where
Sr := {v ∈ Rn

+ : ‖v‖1 =
∑

i vi = r}.

3. The origin is stable in the sense of Lyapunov.

4. If in Assumption 2.2 B = Rn
+, i.e., the origin is

globally asymptotically stable, then for all r > 0,
Ω ∩ Sr 6= ∅.
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Figure 1: A trajectory of the system v̇ = g(v) on
R2

+ with g(v) = (−v1 + v2/4,−v2 + 2v1)T , starting in
v0 = (2.5, 3)T . Since g is type K and φ(t, v0) −→ 0 as
t −→ ∞, we deduce that in the shaded region it must
hold that g(v) � 0.

Further properties of system (1) are as follows: Due
to the type K condition we have the following ordering
of solutions: Let v0, v1 ∈ Rn

+, then on the maximal
interval J = [0, T ) where both solutions φ(·, v0) and
φ(·, v1) of (1) exist, the following implications hold for
t ∈ J ,

1. if v0 ≤ v1 then φ(t, v0) ≤ φ(t, v1);

2. if v0 < v1 then φ(t, v0) < φ(t, v1); and

3. if v0 � v1 then φ(t, v0)� φ(t, v1).

As a consequence it is possible to show that if g � 0
for all v ∈ Rn

+, v 6= 0, the set Ω is positively invariant,
i.e., v0 ∈ Ω, then φ(t, v0) ∈ Ω for all t ≥ 0.

Also it follows that, as illustrated by Figure 2, if g
is type K and φ(t, v0) −→ 0 for some v0 ∈ Rn

+ then the
region B(v0) := {v ∈ Rn

+ : v ≤ φ(t, v0) for some t ≥ 0}
is contained in B, the region of attraction of the ori-
gin. Hence, integrating one trajectory can be enough
to obtain the following conclusion.
Lemma 2.3 Let g be of type K and locally Lipschitz
with g(0) = 0. If for some v0 ∈ Rn

+, φ(t, v0) −→ 0,
then the origin is asymptotically stable (AS) with re-
spect to (1) and B(v0) ⊂ B.

A more topological reasoning underlies the follow-
ing, global result.
Lemma 2.4 Let g be of type K and locally Lipschitz
with g(0) = 0. If Ω is unbounded in every coordinate
direction, i.e., that for any v ∈ Rn

+ one can find a
y ∈ Ω, so that y ≥ v, then the origin must be globally
asymptotically stable (GAS) with respect to (1).

The only difficulty in strengthening AS to GAS is
to verify that Ω satisfies this unboundedness property.
At this point it should be noted that there exist exam-
ples of functions g satisfying all the above assumptions,
except that Ω is not unbounded in all coordinate direc-
tions. So the reasoning proposed here, is not applicable

for any monotone system. However, as we will see later,
it is applicable for quite a wide range of monotone sys-
tems.

3 Large-scale and comparison systems
Consider a large-scale system

ẋ = f(x) (2)

with f locally Lipschitz and decomposed into sub-
systems ẋi = fi(x), xi ∈ RNi , i = 1, . . . , n, with
x = (xT

1 , . . . , x
T
n )T . A classical approach to prove

stability properties of such a large-scale system is by
means of vector Lyapunov functions and comparison
principles.

Assume we already have found Lyapunov functions
Vi : RNi → R+ satisfying for some ψi1, ψi2 ∈ K∞,
ψi1(‖xi‖) ≤ Vi(xi) ≤ ψi1(‖xi‖) as well as the dissipa-
tion inequalities

〈∇Vi(xi), fi(x)〉 ≤ gi(V1(x1), . . . , Vn(xn)) . (3)

Assume g = (g1, . . . , gn)T : Rn
+ → Rn is locally Lips-

chitz and of type K. If g is differentiable, then the type
K requirement can be checked easily: The Jacobian
Jg(v) has to have non-negative entries off the diagonal.
In the locally Lipschitz case, g is differentiable almost
everywhere, and it is enough that the Jacobian matrix
Jg(v) has non-negative off-diagonal entries almost ev-
erywhere for g to be type K. For later use we introduce
the shorthand notation V (x) := (V1(x1), . . . , Vn(xn))T .

4 Practical quasi-global asymptotic
stability

We are interested in numerical methods to check
stability properties of large-scale systems. For this
reason we resort to quasi-global and practical stabil-
ity concepts: Our methods will not be able to produce
inherently global results, we will only be able to as-
sert that a arbitrary large set belongs to the region of
attraction.

Similarly, we cannot guarantee that the origin is in
fact asymptotically stable, due to numerical precision
issues. Instead, we can only assert asymptotic stabil-
ity of a very small compact set containing the origin.
Hence the name practical stability.
Definition 4.1 Consider a system ẋ = f(x). The ori-
gin is termed practically quasi-global asymptotically
stable (PQGAS) if there exists a large set R and a
small compact set C ⊂ R such that

1. R is forward-invariant under (1);

2. for any x0 ∈ R the trajectory
x(1)(t;x0) eventually enters C, i.e., that
limt→∞ infc∈C ‖x(1)(t;x0)− c‖ = 0.

In practice, we will try to find a large set R. Our
aim is to infer this stability property from the com-
parison system (1) to the large-scale system (2) given
together with (3), which is achieved by the following
comparison principle.



Theorem 4.2 (Comparison principle) Let f and Lya-
punov functions Vi be given as in Section 3. Assume
the dissipative inequalities (3) hold with g of type K
and locally Lipschitz.

Assume the origin is practically quasi-global asymp-
totically stable with respect to (1) on a region R(1) ⊂
Rn

+ with C(1) ⊂ R(1). Then the origin is also prac-
tically quasi-global asymptotically stable with respect
to (2) on the region R(2) = V −1[R(1)] ⊂ RN with
C(2) = V −1[C(1)] ⊂ R(2).

The proof follows well-known comparison principle
type results, and is omitted for brevity. The main ar-
gument is based on monotonicity of the solutions of the
comparison system v̇ = g(v), where the dynamics of v
serves as an estimate of the behaviour of the vector
V (x(t)), as t evolves.

To be able to actually use Theorem 4.2, we have
to specify the regions R and C for the comparison sys-
tem. Since this system is monotone, we may utilize a
homotopical fixed point algorithm [3] implementing the
famous KKM Lemma [6] for this task, which amounts
to property 2) in Section 2. The next section describes
how this can be formalized and implemented on a com-
puter.

5 Algorithmic framework
Combining Lemma 2.3 with Theorem 4.2 leads us

to a numerical algorithm to verify stability properties
of a large-scale system (2) as follows. If the origin is
attractive for a monotone system (1), then necessarily
g(v) � v for all v > 0. In particular, this holds on
any set Sr, where r > 0. Using an algorithm due to
Eaves [3], for any given r > 0, g : Rn

+ → Rn
+ satisfy-

ing g(v) � v for all v ∈ Sr, this algorithm computes
a vKKM ∈ Sr satisfying g(vKKM) � 0. It will produce
the point vKKM if the prerequisites are met, and if it
does not produce such a point, then this requirement
might not be met.

Given the point vKKM, our candidate region R is
the order interval [0, vKKM]. From here we proceed
with the following algorithm, which essentially inte-
grates the system forward to find C.

A few remarks regarding the algorithm: The con-
vergence in step 4 is understood as up to numerical
precision. The numerical error analysis resulting from
the particular integration method has to be taken into
account for the assignments of the regions R and C.
The computed trajectory of (1) starting in vKKM is
denoted by vt, t ≥ 0. The right hand sides of the as-
signments in steps 6,7 are order intervals (sets). The
lines stating Ensure are sanity checks. The conditions
states in these lines should be satisfied at these points
in the algorithm. If not, this might be either due to
fact that we did not start with a KKM-point to begin
with, that the origin (or a small compact set C is not
attractive, or that the precision of our numerical inte-
gration is not high enough. If the algorithm succeeds,
then the origin is practically quasi-global asymptoti-
cally stable with respect to the system (1), with the

sets C and R given by the algorithm. Notably, we can
try this algorithm for arbitrarily large r > 0, hence the
naming quasi-global, is justified at the end.

Algorithm 1 Verify PQGAS of a monotone system (1)
Require: radius r > 0 large
Require: g is of type K, locally Lipschitz

1: vKKM ← Eaves-KKM-Algorithm(Sr)
Ensure: vKKM � 0 and g(vKKM)� 0 and g(0) = 0

2: t← 0
3: vt ← vKKM

4: Integrate v̇ = g(v) forward until vt converges
Ensure: that vt decreases monotonically in all com-

ponents
5: vfinal ← vt

Ensure: 0 ≤ vfinal ≤ vKKM

6: R ← [0, vKKM]
7: C ← [0, vfinal]

Remark 5.1 It should be noted, that as initial con-
dition any other point instead of vKKM could be used.
We mainly resort to this choice of initial condition, be-
cause it guarantees existence of the corresponding so-
lution for all times. If in the algorithm we would start
integrating in some v0 that does not necessarily satisfy
g(v0) � 0, then extra care has to be taken to ensure
that finite escape times will be detected by numerical
integration scheme. Also, there might be strong tran-
sient behaviour, that first takes the trajectory φ(·, v0)
far away from the origin, before it might finally ap-
proach the origin. This would provide a larger region
R, cf. Fig. 2. However, depending on the type of non-
linearities and together with unavoidable numerical in-
accuracies, this might lead to wrong conclusions.

6 Example
Here we are going to show some numerical exam-

ples for some randomly chosen type K function g sat-
isfying the � condition. The resulting system can
be interpreted as the comparison system to a large-
scale system (2) consisting of n subsystems. To this
end assume that A ∈ Rn×n is of the form A =
−I + P , where I is the identity and P is a non-
negative matrix (element-wise), with spectral radius
ρ(P ) := max{|λ| : λ is an eigenvalue of P} < 1. It can
be verified that the spectral abscissa α(A) satisfies

α(A) := max{Reλ : λ is an eigenvalue of A}
= −1 + ρ(P ) < 0.

So A is a Hurwitz matrix with negative diagonal entries
and non-negative off-diagonal entries. Now we define a
nonlinear but smooth and order preserving coordinate
transformation S : Rn → Rn satisfying S(0) = 0 and
S(Rn

+) = Rn
+. Here we have chosen S to be diagonal

and given by

S(v)i =


evi/e if vi > 1,
vi if vi ∈ [−1, 1],
−e−vi/e if vi < −1.



Now define the differential equation

v̇ = g(v) = S′(S−1(v))AS−1(v). (4)

Under a nonlinear change of coordinates (4) is just the
system ż = Az, but we pretend not to know that. In-
stead we apply the algorithmic framework of the previ-
ous section to check that the origin is practically quasi-
global asymptotically stable.

The Eaves-algorithm has been implemented (in
MATLAB) as it is proposed in the paper [3] based on
the K1 complex and using the integer labeling

l(v) = min{i : g(v) < −ε}, (5)

where ε is numerical design parameter and usually cho-
sen very small, although it should be noted that larger
ε give faster convergence. This algorithm is then ap-
plied to the simplex Sr and produces vKKM. From here
MATLAB’s ode45 is used to numerically compute the
trajectory φ(t, vKKM, t ∈ [0, T ] for some large T > 0
and to check that φ(T, vKKM) is quite small.

As a proof of concept, numerical simulations have
been performed on a single core of an Intel Core 2 Duo
Processor operating at 2.4 GHz in MATLAB under
Mac OS. The outcomes are shown in Table 1, giving
run times, number of iterations and success rate of the
Eaves-Algorithm, together with corresponding results
obtained from the PQGAS algorithm.

Eaves K1 algorithm
n time #iter. succ.rate
5 0.11465s 367.62 100%
10 0.64855s 2059.65 100%
15 1.7833s 5505.78 100%
25 7.987s 19742.84 100%

PQGAS algorithm
n time ‖φ(T, vKKM)‖1
5 0.027537s 1.214 · 10−06

10 0.026541s 2.3631 · 10−06

15 0.025921s 3.3564 · 10−06

25 0.029049s 4.5434 · 10−06

Table 1: Simulation results for A ∈ Rn×n
+ , A = −I+P ,

r = 10, T = 100, α(A) = −0.2, where matrix P
described above is has uniformly distributed positive
random entries, and 30% of these are set to zero. The
numbers in each row are averages over 100 simulations.

The simulation shows that for any randomly chosen
example the origin is indeed practically quasi-global
asymptotically stable, with R and C given by the PQ-
GAS algorithm.

7 Conclusions
We have demonstrated that comparison principles

are quite powerful when they are combined with ef-
ficient numerical methods. It has been shown that
large-scale system analysis can be done numerically,
and comparison systems of order up to 25 are abso-
lutely feasible.
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