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Abstract— The exact nonlinear loop gain of the belief prop-
agation algorithm (BPA) in its log-likelihood ratio (LLR)
formulation is computed. The nonlinear gains for regular low-
density parity-check (LDPC) error correcting codes can be
computed exactly using a simple formula. It is shown that in
some neighborhood of the origin this gain is actually much
smaller than the identity. Using a small-gain argument, this
implies that the BPA is in fact locally input-to-state stable
and produces bounded outputs for small-in-norm input LLR
vectors. In a larger domain the algorithm produces at least
bounded trajectories. Further it is shown that, as the block
length increases, these regions exponentially shrink.

Index Terms— iterative decoding; LDPC codes; dynamical
system; convergence; belief propagation; small-gain theorem.

I. INTRODUCTION

It is known that the belief propagation low-density parity-
check (LDPC) decoder as well as its turbo decoding coun-
terparts might not converge or might converge to so-called
pseudo-codewords [1, 4, 6, 8, 12, 15, 16, 22, 23]. Identifying
such pseudo-codewords and giving conditions for conver-
gence is an active field of research [13, 22].

When communicating over the additive white Gaussian
noise channel (AWGNC) using LDPC codes, the belief
propagation algorithm (BPA, also known as the sum-product
algorithm or the loopy belief propagation algorithm) approx-
imates the maximum a posteriori probability (MAP), which
is often expressed in the log-likelihood ratio (LLR) domain.
As such, it would be desirable if BPA would return one
finite LLR vector, or converge to one such LLR vector, for
any given finite input LLR vector. This is certainly not the
case: Due to cycles in the parity-check matrix, the LLR
for individual bits can, and most often does, increase —
in magnitude— ad infinitum with the number of iterations.
On the other hand, for the AWGNC the probability that an
LLR input for a given bit is ±∞ is zero, hence a finite LLR
vector as input to BPA is a reasonable assumption. Here, we
consider convergence of LLR vectors, not “convergence to
codewords”, which might be easily confused.

Iterative decoding can be considered as a discrete-time
dynamical system. There exist stochastic approaches (e.g.,
[4] for the related turbo decoding) as well as deterministic
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approaches [12, 23] to model and analyze the performance
and dynamics of iterative decoders, usually by considering
some low dimensional system that describes the average
behavior for a particular ensemble of codes.

Also it is known that for so-called ensembles of codes
average performance bounds can be calculated and are often
exact [17]. These are known as stability results and again
are obtained by a fixed point analysis of a one-dimensional
approximation of the large-scale system describing the evo-
lution of the decoding error.

A full-order dynamical system representation of the belief
propagation algorithm has been considered in [18], where
convergence has been studied in the special case when the
dynamics is linear, which corresponds to so-called repeat
codes.

Contraction conditions for convergence analysis of the
belief propagation algorithm have been considered in [15].
Such conditions depend on the particular factor graph, or,
in the case of the BPA decoder, of the particular form
of the parity-check matrix. Unfortunately, in general, BPA
decoding of LDPC codes is not a contraction, as is evident
by the existence of non-convergent counterexamples and also
follows from existing bifurcation analysis [10–12, 23].

Despite this, approaches to overcome the obstacles of
non-convergence do exist (notably, this usually means “con-
vergence to codewords” unlike in this paper). One such
approach is to introduce damping into BPA or related algo-
rithms. E.g., in [3] it is shown that the max-product algorithm
—if attenuated and skewness-compensated— converges to
the MAP codeword if it converges at all. Based on a
linearization of the message-update rule, factor graphs con-
taining at most pairwise interactions are considered in [14].
This version of “dampened” BPA is a modified message-
update rule, which amounts to a convex combination of the
old and the new message. There it is observed that this form
of damping can improve performance in the purely anti-
ferromagnetic case while for spin-glass interactions it helps
only slightly. Also in [7] it is mentioned that damping would
improve convergence, but this is rather vague.

In contrast, here we compute the exact nonlinear loop
gain of the BPA in its LLR formulation. Gain analysis is in
essence a simplification of a contraction analysis. We will see
that in some neighborhood of the origin this gain is actually
much smaller than the identity. Using a small-gain argument,
this implies that BPA is in fact locally input-to-state stable
and produces bounded outputs for small-in-norm input LLR
vectors. We compute the probability for a given block length
that an LLR vector received from AWGNC falls in this region
of small-in-norm inputs. We then show that this probability



decreases exponentially with increasing block length.
This paper is organized as follows: In Section II we

recall the dynamical system formulation of BPA for decoding
LDPC codes communicated over an AWGNC. In Section III
we first introduce some more necessary notation and then
recall convergence conditions based on contractions of sys-
tem operators for discrete-time dynamical systems. Then we
compute the loop gain of the system operator, which can be
used for a simplified analysis. We explicitly state the formula
for the nonlinear system gain for a given parity-check matrix
and show that, in most cases, this gain turns out to be less
than the identity in a neighborhood of the origin, and to be
larger than the identity away from the origin. We recall the
concept of local input-to-state stability and develop a stability
theorem for BPA based on a small-gain theorem. Finally we
compute the probability that inputs to the BPA actually fall in
the region where the loop gain is small. Section IV concludes
the paper.

II. STATE-SPACE REPRESENTATION OF BPA

The belief propagation algorithm for the decoding of an
LDPC code is completely characterized by the parity check
matrix of this code. Starting from a given parity-check
matrix H ∈ Fm×n

2 we cast this algorithm into a state-space
representation that is amenable to a systems theoretic-type
analysis as in [18]. Here we briefly recall the basic steps.

The LLR formulation of the belief propagation algorithm
under consideration is as follows. Initially, the a-priori prob-
abilities for every bit are computed and passed as LLR
messages from bit- to check-nodes, denoted by lµ0

xi→h j
. Then

the following two update rules are iterated. First, update the
factor-to-variable messages according to

lµh j→xi
= 2arctanh ∏

k 6=i:
xk adjacent to h j

(
tanh

lµxk→h j

2

)
. (1)

Then update the variable-to-factor messages as

lµxi→h j
= lµ0

xi→h j
+ ∑

l 6= j
lµhl→xi

, (2)

and the intermediate marginalization, or per bit a-posteriori
probabilities, after every iteration are given by

li = lµ0
xi→h j

+∑
l

lµhl→xi
, (3)

where lµ denotes the LLR value of a particular message, see
[18] for details.

This algorithm can be cast into a state-space form by
enumerating the messages in each iteration and defining
operators mapping variable-to-check messages to check-to-
variable messages and vice versa.

Since the messages are sent along the edges in the Tanner
graph, we effectively enumerate the edges in the Tanner
graph. For a graph with q edges, there are 1 · 2 · . . . · q = q!
possible ways to perform this enumeration all of which
qualitatively lead to the same state-space representation,
up to a renumbering of the states. We pick a canonical

enumeration: As the edges in the Tanner graph correspond
to non-zero entries in the parity-check matrix H, we can
enumerate these entries from top to bottom, row by row, as
in the following example taken from [18]:

H =

11 12 0 0
0 13 14 0
0 0 15 16

 . (4)

This enumeration gives us a mapping n(k) = nH(k) =
(n1(k),n2(k)) denoting the coordinates (i, j) ∈ {1, . . . ,m}×
{1, . . . ,n} of the kth non-zero entry in H ∈ Fm×n

2 , for k ∈
{1, . . . ,q}, where q is the total number of nonzero entries in
H.

The messages lµxi→h j
and lµh j→xi

become the states of the
dynamical system to be defined, and the enumeration n pro-
vides for the one-to-one correspondence between messages
and states via

lµxn2(k)→hn1(k)
=: xk

1 and lµhn1(k)
→xn2(k) =: xk

2 ,

where, with a slight abuse of notation, we have denoted
states of the dynamical system with x1,x2 ∈ Rq. Now the
message update rules can be cast into the following operator
equations,

x+
1 = Px2 +Bu

x+
2 = S(x1)

y = BT x2 +u ,

(5)

where u is the input LLR vector, i.e., the LLRs obtained from
the channel, corresponding to a-priori probabilities for each
bit, and y is the vector of output LLRs, i.e., the LLR vector
corresponding to intermediate estimates of the conditional
a-posteriori probabilities. The structure of the dynamical
system (5) is depicted in Figure 1. The definition of all
operators in (5) follows.

As all operators except the operator S are linear, these can
be thought of as matrix-vector multiplications. In particular,
define the matrix B = BH = (bi j) ∈ Rq×n by

bi j =

{
1 if n2(i) = j
0 otherwise .

(6)

and the map P = PH : Rq→ Rq by

Pi(ξ ) = ∑
j 6=i:n2( j)=n2(i)

ξ j, (7)

for ξ ∈Rq. This operator can be represented as matrix-vector
multiplication via P(ξ ) = Pξ , ξ ∈Rq, where the matrix P =
PH = (pi j) ∈ Rq×q is defined by

pi j =

{
1 if j 6= i, n2(i) = n2( j)
0 otherwise .

(8)

The nonlinear operator S = SH : Rq→Rq is given explicitly
by

Si(ξ ) = 2arctanh

(
∏

j 6=i:n1( j)=n1(i)
tanh

ξ j

2

)
, (9)

for ξ ∈ Rq.
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Fig. 1. Block diagram of the BP algorithm cast as a dynamical system.
The only nonlinear component is the operator S.

In [18] it has been shown that in case of repeat codes
the dynamics of (5) are linear, i.e., the operator S becomes
linear. In this case the Tanner graph is a tree, and convergence
of BPA is assured. This can also be seen by rewriting the
(now linear) system (5) in the form z+ = Az + Bu where

A =
[

0 P
S 0

]
, zT = (xT

1 ,xT
2 ) and B =

[
B
0

]
and observing that

the spectrum σ(A) is contained in the open unit disc in C. In
fact, the matrix A turns out to be nilpotent [18], guaranteeing
finite-time convergence.

III. MAIN RESULTS

A. Preliminaries

Depending on context, ‖ · ‖ denotes the max-norm or the
induced operator norm. For functions f : Rp → Rq and g :
Rq→ Rr we denote by g◦ f the function x 7→ g( f (x)). For
a function x : N→ Rq by ‖x(·)‖∞ we denote supk≥0 ‖x(k)‖.

Recall that the comparison function classes K and K∞

are, respectively, the sets of continuous functions {γ :
R+→R+ , γ(0) = 0, γ is strictly increasing} and {γ ∈K :
γ is unbounded}. For convenience we write class G = K ∪
{0} to include the zero function. The class of continuous
positive definite functions α : R+→R+ is denoted by PD .
A function β : R2

+→ R+ is of class K L if for fixed t ≥ 0
the function β (·, t) is of class K and for fixed s ≥ 0 the
function β (s, ·) is non-increasing with limt→∞ β (s, t) = 0.

B. Conditions for convergence

It has been recognized in [15] that one sufficient condi-
tion for convergence of BPA is that the message-updating
mapping constitutes a contraction. A contraction mapping
is a mapping f : X → X on a complete metric space (X ,d)
satisfying

d( f (x), f (y))≤ k (d(x,y)) (10)

where k : R≥0→ R≥0 satisfies k < id. In the case where the
function k(·) is linear, (10) reduces to d( f (x), f (y)) ≤ k ·
d(x,y) for some 0≤ k < 1, cf. [19]. The Banach Contraction
Principle states that any contraction mapping has a unique
fixed point. Note again that such a fixed point lies in the
LLR domain, not in the codeword domain.

The following theorem states that if BPA acts as a con-
traction it does so independently of the input. In particular,
if BPA constitutes a contraction, this fact is independent of
the signal to noise ratio (SNR) of the channel.

Theorem 3.1: For any given parity-check matrix, the Be-
lief Propagation algorithm is a contraction mapping if and
only if the P◦S loop constitutes a contraction.

Proof: Let us rewrite the x-dynamics in (5) as

x+ = T (x)+Bu (11)

with x = (xT
1 ,xT

2 )T ,

T (x) = (P(x2)T ,S(x1)T )T , (12)

and B =
[

B
0

]
. Now let f (x) := fu(x) := T (x)+Bu and observe

that the dynamics are affine in u, i.e., for any x1,x2 ∈ R2q,

d( f (x1), f (x2)) := ‖ f (x1)− f (x2)‖
= ‖T (x1)+Bu−T (x2)−Bu‖
= ‖T (x1)−T (x2)‖
≤ k‖x1− x2‖ (13)

for some Lipschitz constant k > 0, possibly depending on the
compact set containing x1 and x2. While this constant will,
in general, be greater than one, we observe that the Lipschitz
constant does not depend on u.

Interestingly, since the dynamical system (5) does not
represent a physical system but a computer algorithm, we
can modify T to some T̃ such that the constant in (13)
becomes less than one for that operator T̃ . For example,
one could introduce a damping such that the cycle gain
becomes small. In general, however, such a simple approach
does not necessarily improve the performance of BPA. For
example, since BPA computes the exact MAP on trees
already, any dampened version would not be exact on trees.
Our simulations further suggest that BPA with T replaced by
T̃ = c ·T for some appropriately small 0 < c < 1 generally
deteriorates decoding performance.

Instead of considering T as a mapping on a high di-
mensional space, it is often more convenient to project
the concept of interest down to lower dimensions to ease
analysis. That is roughly the idea behind the next section.

C. Computing gains

By the input-output gain or simply gain of a map M :
Rp→Rq we denote the non-negative function g : R+→R+
given by

g(r) = sup
{
‖M(x)‖ : x ∈ Rp, ‖x‖= r

}
.

It is important to highlight that this definition depends on
the choice of norms. In this paper the max-norm is used.

The mapping that assigns MAP LLR vectors to input a-
priori LLR vectors obviously has finite gain. The output of
BPA in the presence of cycles in the factor graph, however,
does not necessarily converge, and individual LLR values
may increase unboundedly in magnitude over iterations. As
such, BPA as a mapping from input LLR vectors to sets of
output LLR vectors does not necessarily have finite gain.
The magnitude of an LLR can be interpreted as knowledge
or certainty about the value a particular bit has. The higher
the magnitude of the LLR, the more certain we can be about
the value of the bit. It is hence of interest to understand how
this certainty changes when BPA performs its iterations.



To compute the gain of the feedback loop in the dynamical
system (5), let us first consider individual input-output gains
of single nodes. For i ∈ {1, . . . ,q} denoting the number of
an edge in the factor graph of a fixed parity-check matrix
H, let c(i) denote the degree of the adjacent check-node and
v(i) the degree of the adjacent variable node.

For a given check-node with degree c it is not difficult to
see that its input-output gain with respect to the max-norm
is given by

gc(r) = 2arctanh
((

tanh
r
2

)c−1
)

, r ≥ 0 . (14)

The gain of a variable-node of degree v is simply v−1. Fig. 2
shows gains for check-nodes of different degree.
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Fig. 2. Exact nonlinear gains for different check-node degrees.

Now we can combine these considerations into the fol-
lowing result:

Lemma 3.2: Let a parity-check matrix H ∈ Fm×n
2 and the

associated operators (7)–(9) be given. Then the nonlinear
gain γH ∈ G of the P◦S-loop with respect to the max-norm
is given by

γH(r) := max
‖x‖=r

‖(P◦S)(x)‖

= max
1≤i≤q

∑
j 6=i

n2( j)=n2(i)

gc( j)(r) , r ≥ 0 . (15)

Note that this upper bound is sharp. The formula implies
that the gain is the same for any parity-check matrix H
describing a regular code, since the check-node degree and
also the bit-node degree are uniform. However, for irregular
codes different choices of parity-check matrices may lead to
different gains.

D. Local input-to-state stability

Loop gains and small-gain theorems, have proven quite
useful in analysis and design of control systems over the past
50 years, starting out originally with linear gains and more
recently with nonlinear gains, see [2] for a recent overview
of the field.

Here we utilize the concept of local input-to-state stability.
Roughly, a system with states and inputs, evolving in time,
is called (globally) input-to-state stable provided the equi-
librium is globally asymptotically stable in the absence of
inputs, and, for essentially bounded inputs, a ball centered
at the equilibrium with radius parametrized by a (nonlinear)
function of the magnitude of the input is globally asymptot-
ically stable, cf. [20, 21].

Definition 3.3: A system

x+ = f (x,u) (16)

is termed
• locally input-to-state stable (LISS), if there exist β ∈

K L and γ ∈K , δx > 0 and δu > 0, such that for all
‖x(0)‖ ≤ δx and ‖u(·)‖ ≤ δu,

‖x(k)‖ ≤ β (‖x(0)‖,k)+ γ(‖u(·)‖), ∀k ≥ 0; (17)

• locally stable (LS) if there exist σ ,γ ∈K and δx > 0
and δu > 0, such that for all ‖x(0)‖≤ δx and ‖u(·)‖≤ δu,

‖x(k)‖ ≤ σ(‖x(0)‖)+ γ(‖u(·)‖), ∀k ≥ 0 . (18)

We say that system (16) has the local asymptotic gain
property (LAG) if there exist a function γ ∈K , δx > 0 and
δu > 0, such that for all ‖x(0)‖ ≤ δx and ‖u(·)‖ ≤ δu,

limsup
k→∞

‖x(k)‖ ≤ γ(‖u(·)‖), ∀k ≥ 0 . (19)

The corresponding global definitions are termed ISS, GS,
and AG, and are defined as in (17)–(19), respectively, but
without the restrictions on initial conditions and inputs. Our
main ISS result is as follows.

Theorem 3.4 (LISS small-gain theorem): Let H ∈ Fm×n
2

and the corresponding operators (7)–(9) be given. If the gain
γH satisfies

γH(r) < r (20)

for r ∈ (0,R) for some R > 0, then the x-dynamics of (5) is
locally ISS and, hence, BPA yields bounded outputs for all
‖u(·)‖ ≤ δu.

Fig. 3 shows loop-gains γH for two common regular
codes in comparison with the identity. Condition (20) of
Theorem 3.4 is obviously satisfied.

Proof: It is known that ISS and GS+AG are in fact
equivalent, see [5, 9]. By the same arguments it is plain to
see that also the local variants are equivalent, i.e., LISS and
LS+LAG are equivalent. Hence to prove LISS in the theorem,
it is sufficient to prove that an LS and an LAG estimate hold.

Proof that the x-dynamics is LS: Due to (20) we may
choose δ̃x, δ̃u > 0 and κ ∈ (0,1), such that γH(r) < κr for all
r ∈ [0,R0] with δ̃x ≤ R0 ≤ R, and κδ̃x + δ̃u ≤ δ̃x.

Let δu := δ̃u/‖B‖. Then the estimate ‖x1(k + 2)‖ ≤
‖PS(x1(k)) + Bu(k + 1)‖ ≤ κ‖x1(k)‖ + ‖B‖‖u(k + 1)‖ ≤
κδ̃x + δ̃u holds for all ‖x1(k)‖ ≤ δ̃x and ‖u(k + 1)‖ ≤ δu.
Inductively this yields for ‖x1(0)‖ ≤ δ̃x and ‖u(·)‖ ≤ δu,

‖x1(2k)‖ ≤ κk‖x1(0)‖+
k−1

∑
l=0

κ l‖B‖‖u(·)‖, ∀k ≥ 0 . (21)
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Fig. 3. The nonlinear loop-gain γH for (3,6)- and (4,6)-regular LDPC
codes in comparison to the identity.

Analogously, we compute for ‖x1(1)‖ ≤ δ̃x and ‖u(·)‖ ≤ δu,

‖x1(2k +1)‖ ≤ κk‖x1(1)‖+
k−1

∑
l=0

κ l‖B‖‖u(·)‖, ∀k ≥ 0 .

(22)
Using the fact that ‖S‖≤ 1, and hence ‖x2(k+1)‖≤ ‖x1(k)‖
for all k ≥ 0, as well as ‖x1(1)‖ ≤ ‖P‖‖x2(0)‖, we obtain
the following conservative estimate:

‖x(k)‖ ≤max{1,‖P‖}‖x(0)‖+ ‖B‖
1−κ

‖u‖

for all k≥ 0, ‖x(0)‖ ≤ δx := δ̃x
‖P‖ and ‖u(·)‖ ≤ δu. This is an

estimate of the form (18) proving LS.
Proof that the x-dynamics is LAG: An LAG estimate of the

form (19) follows from inequalities (21), (22), and ‖x2(k +
1)‖ ≤ ‖x1(k)‖, as well as the fact that 0 ≤ κ < 1. Together
the LS+LAG estimates prove local input-to-state stability of
the x-dynamics of (5).

Proof that outputs remain bounded: Recall that BPA al-
ways starts from x(0) = 0. By the first part of the theorem we
have ‖x(k)‖ ≤ ‖B‖

1−κ ‖u(·)‖ whenever ‖u(·)‖ ≤ δu. It follows
that ‖y(k)‖ = ‖BT x2(k)+ u(k)‖ ≤

(
‖BT‖ ‖B‖1−κ + 1

)
‖u(·)‖ for

all k ≥ 0. This implies the claim.

E. More on the small-in-norm input region

As we have seen the nonlinear loop gain is essentially de-
termined by the “worst” combination of check-node/variable-
node degree combination in the factor graph. For fixed degree
distributions and increasing block lengths it is of interest
to compute the probability that a channel measurement for
a given channel actually falls within the region where our
previous results apply.

We consider the AWGNC that maps x∈{±1} to y = x+w,
where w ∈ N (0,σ2). Assuming uniform and independent
priors for the channel input X we have P(X = 1) = P(X =
−1) = 1

2 . Let N be a N (0,σ2) distributed random variable.
Then the probability that Y = X +N ∈ [−ε,ε], with ε > 0, is

given by P(X +N ∈ [−ε,ε]) = 1
2 P(N +1∈ [−ε,ε])+ 1

2 P(N−
1 ∈ [−ε,ε]) = P(N +1 ∈ [−ε,ε]) by symmetry. We obtain

P(X +N ∈ [−ε,ε]) =
ε∫
−ε

1√
2πσ2

e−
(x−1)2

2σ2 dx =: κ(ε,σ) .

As noise acts independently on different bits of a transmitted
codeword, for a multivariate channel input X of length n
we have that the channel output Y = X + N, where the
components of N are i.i.d., satisfies

P(X +N ∈ [−ε,ε]n)

=
n

∏
i=1

P(X i +Ni ∈ [−ε,ε])

=
n

∏
i=1

κ(ε,σ) = κ(ε,σ)n .

Since for fixed ε > 0 and σ > 0 we have κ(ε,σ) ∈ (0,1), it
follows that as n−→ ∞, the probability P(X +N ∈ [−ε,ε]n)
tends to zero. Now taking into account the mapping from
received channel symbols y∈R to LLR values u∈R, which
is given by

u =
2y
σ2 ,

we thus have proved the following result.
Theorem 3.5: The probability that an input LLR vector u

to BPA, obtained from a vector of channel symbols received
over an AWGN channel with parameter σ , has max-norm
‖u‖< ε can be computed as

P(‖U‖< ε) = κ
(ε

2
σ2,σ

)n

and it satisfies P(‖U‖< ε)−→ 0 as n−→ ∞.
Together with our estimate on the loop gain we obtain:
Corollary 3.6: The probability that a received vector con-

tains little enough certainty that this certainty ultimately
cannot be increased by BPA processing, decreases with block
length for fixed degree distributions.

IV. CONCLUSIONS AND OUTLOOK

Using a loop-gain analysis we have shown that the loopy
belief propagation algorithm is actually very well behaved, as
long as it faces inputs of “low certainty,” in the sense that its
output in terms of LLR vectors is bounded. In particular, the
algorithm does not generate values that increase in magnitude
ad infinitum so long as the LLR inputs are initially small in
magnitude.

While this low certainty assumption in general does not
apply to the majority of possible inputs, it sheds new light
on possible ways how the maximum a-posteriori probability
estimation might be improved.
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