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Abstract— This paper considers the problem of verifying
stability of large-scale nonlinear dynamical systems. Using
a comparison principle approach we present a numerical
method of estimating the asymptotic gain characterizing the
effect of external disturbances on the stability of a large-scale
interconnection. The unique idea is to make use of solely the
knowledge of one single trajectory of the comparison system
for estimating the behavior of all possible trajectories. It is
shown that an asymptotic gain can be obtained from just a
single trajectory of a disturbance-free comparison system. The
single-trajectory approach leads to a computationally cheap
implementation with which we can numerically check whether
or not a large-scale system is input-to-state practically stable.

I. INTRODUCTION

We consider large-scale interconnections of input-to-state
practically stable (ISpS) systems in an arbitrary interconnec-
tion topology. It is known that under suitable conditions such
interconnections yield an ISpS composite system. The diffi-
cult part here is to verify the stability condition, also known
as generalized small-gain condition. This paper demonstrates
that this task can be supported by following the these few
steps:

i) Consider the comparison system

v̇ = g(v) + w, , v, w ∈ Rn+, (1)

of the large-scale interconnection subject to external
disturbances. This is given.

ii) Compute one special trajectory of the autonomous
system

v̇ = g(v) (2)

(or a sampled version of it).
iii) Estimate the stability of the large-scale interconnection

with respect to the disturbances by evaluating the right
hand side of (2) only along the previously computed
trajectory.

Hence, computing just one special trajectory of the compar-
ison system numerically leads us to an asymptotic gain of
the large-scale interconnection. In other words, this paper
presents an analytical formula for the asymptotic gain in
terms of the single special trajectory as well as theoretical
tools justifying such an approach.
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Stability conditions for large-scale interconnections of
dynamical systems have been studied at least since the
1960s, and there is a significant amount of literature on
the subject. Among other approaches, most notable for
our purposes are vector Lyapunov function and comparison
principle approaches (e.g., [14]). More recently, stability of
large-scaled systems has been studied within the input-to-
state stability (ISS) framework [5], [7], [12], [13] including
input-output stability and systems with time delay. These
approaches lead to generalized small-gain conditions, based
on the requirement that a particular operator is a contraction
in a “strict” way. Some of these small-gain conditions are
analytically feasible to handle, especially the so-called cyclic
or max-type small-gain conditions [7], [15]. Here one has to
verify that a couple of functions are strictly smaller than the
identity. Analytically more difficult to verify are other small-
gain conditions, especially those where individual gains enter
subsystem estimates in forms of sums, e.g., as in [5], [17].
This motivated an efficient scheme to verify these conditions
on prescribed regions numerically, [6]. A computational
version of a comparison principle for global asymptotic
stability has been pursued in [18]. Numerical verification of
the ISS property and computation of transient and asymptotic
bounds has been a practically important issue. For example,
a dynamic programming approach has been proposed in [10]
for obtaining tight asymptotic gains of ISS systems. In this
paper, we pursue a way to compute asymptotic gains of
large-scale interconnections based on information about only
individual systems.

In stability analysis of dynamical systems monotonicity
is a useful property [1], [2], [9], [16], which is sometimes
possessed by either original systems or their comparison
systems. In this paper we also make use of the monotonicity.
However, our unique idea is to utilize the monotonicity to
numerically verify stability, which lies in just one trajectory.
Here we provide a method to test whether or not a large-scale
system is ISpS by computing the asymptotic bound on the
states for a given magnitude of input disturbance numerically.

Our results are based on the following reasoning: Consider
a monotone system (1) with g : Rn+ → Rn locally Lipschitz
and quasi-monotone nondecreasing, g(0) = 0, and v, w ∈
Rn+. This system evolves on the non-negative orthant Rn+.
If this system is input-to-state stable from w to v then the
autonomous part (2) admits a special trajectory φ̃(t) (or sta-
ble manifold) defined for all times, along which g(φ̃(t))�
0, i.e., here the vector field is strictly negative in all its
components. Knowledge of this trajectory essentially reduces
the system dynamics down to one dimension. Furthermore,
the magnitude of the vector field g along this trajectory



provides a bound on the maximal input disturbance w(t)
so that g(φ̃(t)) +w(t) ≤ 0 (this will be made precise later).
From here, an asymptotic gain of the original system (1)
subject to the disturbance w is simple to compute, and via
the vector Lyapunov function the asymptotic gain can be
translated to the large-scale system.

The paper is organized as follows. First we introduce
necessary notation. Then, in Section III we recall some facts
on monotone systems, which will in our context appear
as comparison systems. Section IV introduces the large-
scale interconnection of dynamical systems together with the
corresponding comparison system. The main results are The-
orem 4.8 and Corollary 5.1, which is especially tailored for
numerical implementation. Examples and numerical statistics
are provided in Section VI, with a conclusion provided in
Section VII.

II. NOTATION

The set R+ denotes the non-negative real numbers, Rn+
is called the positive orthant in Rn (non-negative orthant
would be more accurate though), and it defines the following
component-wise partial order: Vectors v, y ∈ Rn are ordered
by v ≤ y if y − v ∈ Rn+, v � y if y − v ∈ intRn+, where
intA denotes the interior of a set A, and v < y if v ≤ y
and v 6= y. If v, w ∈ Rn, v ≤ w, then the compact set
[v, w] = {y ∈ Rn : v ≤ y ≤ w} denotes an order interval.
Denote by x−Rn+ the set {y ∈ Rn : y ≤ x} and by x+Rn+
the set {y ∈ Rn : y ≥ x}.

We also introduce the following component-wise versions
of absolute value and norm: For vectors v ∈ Rn we write
|v| := max{v,−v} ∈ Rn+. For x ∈ RN1×...×RNn we write
‖x‖ = (‖x1‖, . . . , ‖xn‖)T . The choice of norm ‖ · ‖ is
arbitrary, but sometimes we use the 1-norm which is denoted
by ‖ · ‖1.

For maps f and g, (f ◦g)(x) denotes f(g(x)). A function
γ : R+ → R+ is of class K if γ(0) = 0, γ is continuous
and strictly increasing. A function is of class K∞ if it is of
class K and unbounded.

Given a compact set A ∈ RN by ‖x‖A we denote the
distance of x ∈ RN to A, i.e., ‖x‖A = infy∈A ‖x − y‖.
Although the symbol might suggest otherwise, the dis-
tance function with respect to the set A, ‖ · ‖A, is not
a norm. If A = A1 × . . . × An we also write ‖x‖

A
=

(‖x1‖Ai
, . . . , ‖xn‖Ai

)T , and similarly for L∞ norms.

III. PRELIMINARIES

Here we collect a few facts regarding monotone systems.
We refer the reader to [14], [19], [20].

A map g : Rn → Rn is quasi-monotone nondecreasing if
gi(v) ≤ gi(w) whenever v ≤ w ∈ Rn and vi = wi. This
property is also known under a different name, namely that
g is of “type K”. If g is locally Lipschitz continuous, then
sufficient for g to be quasi-monotone nondecreasing is that
for almost all v, ∂gi

∂vj
(v) ≥ 0.

Lemma 3.1 (Facts; monotone systems): Consider

v̇ = g(v) (3)

with g(0) = 0, g : Rn+ → Rn locally Lipschitz and quasi-
monotone nondecreasing. Then

i) Trajectories of (3) are constrained to Rn+ as long as
they exist.

ii) (Ordering of solutions). The flow of (3) is order
preserving: For ≺ denoting one of ≤, <,�, if v0 ≺
w0 then for all times t where both solutions exist
φ(t, v0) ≺ φ(t, w0). Here, v0 and w0 denote the initial
conditions.

iii) The ordering of solutions remains true if (3) is replaced
by the time varying system

v̇ = g(t, v), (4)

where g(t, ·) quasi-monotone nondecreasing for almost
all t.

iv) The ordering of solutions even remains true (with the
ordering as above) if φv(t, t0, v0) is a trajectory of
the system v̇ = g(t, v), φw(t, t0, w0) is a trajectory of
the system ẇ = g̃(t, w), and g̃(t, ·) − g(t, ·) is quasi-
monotone nondecreasing for almost all t ∈ R.

v) If the origin is attractive with respect to (3) with region
of attraction B then
• for all v ∈ B, v 6= 0, g(v) � 0;
• for all r > 0 such that Sr := {v ∈ Rn+ : ‖v‖1 =
r} ⊂ B,

Ω(g) ∩ Sr 6= ∅,

where Ω(g) := {v ∈ Rn+ : g(v)� 0};
• the origin is stable in the sense of Lyapunov.

vi) The set Ω defined above is forward invariant.
vii) If the origin is globally attractive with respect to (3)

then there exists a trajectory φ̃, defined for all times,
along which g(φ̃(t))� 0.

IV. LARGE-SCALE INTERCONNECTIONS

A. Comparison principle

Let interconnected systems

ẋi = fi(x, ui) (5)

be given, with f(x, u) := (f1(x, u1)T , . . . , fn(x, uTn )T lo-
cally Lipschitz in x, uniformly for u in compact sets; xi ∈
RNi , ui ∈ RMi , i = 1, . . . , n, with x = (xT1 , . . . , x

T
n )T

and u = (uT1 , . . . , u
T
n )T . The interconnection of systems (5)

yields the composite, large-scale system

ẋ = f(x, u). (6)

We are interested in stability of a compact set Ai with
respect to system (5). Without loss of generality, 0 ∈ Ai,
and as a special case we have Ai = {0}.

Assume that n smooth functions Vi : RNi → R+, i =
1, . . . , n are given, satisfying for some ψ1i, ψ2i ∈ K∞, αi ∈
K∞, and γij , ηi ∈ (K ∪ {0}),

ψ1i(‖xi‖Ai) ≤ Vi(xi) ≤ ψ2i(‖xi‖Ai) (7)



as well as the dissipation inequalities

〈∇Vi(xi), fi(x, ui)〉 ≤

− αi(Vi(xi)) +
∑
j

γij(Vj(xj)) + ηi(‖ui‖) (8)

for all x and ui. The function Vi is referred to as an ISS
Lyapunov function of system (5) with respect to Ai [22].
This notion is called input-to-state stability with respect
to a compact set Ai, and it is equivalent to input-to-state
practical stability (ISpS), cf. [11]. In case that Ai = {0}
this notion of course reduces to the familiar input-to-state
stability (ISS) [21].

We will assume further that the functions αi and γij are all
locally Lipschitz. This assumption can, however, be relaxed,
but that is not subject of this paper.

We will use the shorthand notation V (x) =
(V1(x1), . . . , Vn(xn))T . The map V : RN → Rn+ is
sometimes called a vector Lyapunov function [14].

The dissipation inequalities (8) lead to a comparison
system

v̇ = g(v) + η(w), v, w ∈ Rn+, (9)

with gi(v) = −αi(vi) +
∑
j γij(vj), and η(w) =

(η1(w1), . . . , ηn(wn))T . The function g is obviously quasi-
monotone nondecreasing. Moreover, since the αi and γij are
locally Lipschitz, so is g : Rn+ → Rn. By Lemma 3.1, the
dynamics of (9) is confined to Rn+, and solutions are ordered.
Hence, the comparison system (9) is a monotone system.

The comparison system (9) and the composite system (6)
arising as the interconnection of individual subsystems (5)
are related in the expected way. Denote A =

∏n
i=1Ai. We

cite the following result from [19].
Theorem 4.1 (Comparison principle): i) If system (9)

is ISS from w to v then system (6) is ISS from u to
x with respect to the compact set A.

ii) If L : Rn+ → R+ is an ISS Lyapunov function for (9)
then V (x) := L(V (x)) is an ISpS Lyapunov function
for (6) (i.e., an ISS Lyapunov function with respect to
A).

This theorem motivates that it is enough to understand
the comparison system in order to verify not only internal
stability of the original large-scale system, but also the
stability in the presence of external disturbances.

B. ISS of the monotone system

The reasoning behind the main result, Theorem 4.8 in
Section IV-C, relies on the following technical facts. Proofs
are given in the appendix.

Lemma 4.2: Consider a dynamical system ẋ = f(x),
f : Rn → Rn quasi-monotone nondecreasing, locally Lip-
schitz, forward complete (i.e., solutions exist for all times),
f(x) ≤ 0 and for all x > x, f(x) � 0. Assume for all x > x
there exists a y ≥ x so that f(y) � 0. Then all solutions
starting in x+ Rn+ are attracted to the set x− Rn+.

Conversely, if f is forward complete and quasi-monotone
nondecreasing, f(x) ≤ 0, and all solutions starting in x+Rn+

are attracted to the set x−Rn+, then necessarily for all x > x,
f(x) � 0.

Lemma 4.3: Assume that g is quasi-monotone nonde-
creasing and locally Lipschitz with g(0) = 0.

i) System (9) is ISS from w to v if and only if

v̇ = g(v) + w (10)

is ISS from w to v.
ii) System (10) is ISS if and only if for every v, w ∈ Rn+

there exists a v ≥ v, so that g(v) + w � 0.
Lemma 4.4: Assuming that (10) is ISS, then
i) there exists a special solution φ̃(·) of the autonomous

dynamics
v̇ = g(v), (11)

which is defined for all times and g(φ̃(t))� 0 for all
t ∈ R.

ii) Let O := {φ̃(t)}t∈R ∪ {0}, a closed set. This set can
be parametrized as by path σ : R+ → O satisfying
‖σ(r)‖1 = r for all r ≥ 0.

iii) Each component σi of this path is a class K function,
at least one of them is unbounded.

By utilizing the previous result, Lemma 4.3 can be made
more precise; often we can find parametrized versions of v
and w such that g(v) + w � 0, as follows.

Lemma 4.5: Assume that g is quasi-monotone nonde-
creasing and locally Lipschitz with g(0) = 0. Let (10) be
ISS from w to v and σ be given by Lemma 4.4. Assume that
σi is of class K∞, i = 1, . . . , n. If the map ρ̃ : R+ → Rn+
given by ρ̃(r) := −g(σ(r)) satisfies ρ̃(r)� 0 for all r > 0
and

lim inf
r→∞

ρ̃i(r) =∞

then there exist functions ρi ∈ K∞ such that ρi(r) < ρ̃i(r)
for all r > 0. In particular,

g(σ(r)) + ρ(r)� 0 for all r > 0.
A related converse statement of Lemma 4.5 is also true:
Lemma 4.6: Assume that g is quasi-monotone nonde-

creasing and locally Lipschitz with g(0) = 0. If there
exist maps σ, ρ : R+ → Rn+ with σi, ρi ∈ K∞ such that
g(σ(r)) + ρ(r) � 0 for all r > 0 then (10) is ISS from w
to v.

These are the necessary ingredients to get the main result
in the next section.

Remark 4.7: In view of Lemma 4.6 it may seem that ρ
and σ always have to be of class K∞ in every component.
This is, however, not true. For example, the system

v̇ = g(v) + w

with g : R2
+ → R2 given by

g(v) =
(
−v1 + 1

2v2
−v2 + tanh(v1)

)
admits paths σ, with g(σ(r)) � 0 for r > 0, that are
bounded in the second component. In this case the resulting
ρ is also bounded in the second component.



C. Main result

Theorem 4.8: Let a large-scale system (6), decomposed
into subsystems (5) satisfying (7)–(8), be given. Assume
that g arising from (8) is quasi-monotone nondecreasing and
locally Lipschitz with g(0) = 0.

Assume there exist functions σ, ρ : R+ → Rn+ with
σi, ρi ∈ K∞, i = 1, . . . , n, such that g(σ(r)) + ρ(r) � 0.
Then the gain of the magnitude of external disturbances
to the asymptotic magnitude of the states of the nominal
system (6) is component-wise bounded from above by a map
G : Rn+ → Rn+ given by

G(w) = ψ−1
1 ◦ σ ◦max

i
ρ−1
i ◦ ηi(wi), (12)

where ψ−1
1 (v) := (ψ−1

11 (v1), . . . , ψ−1
1n (vn))T (which are

given by (7)), in the sense that

lim sup
t→∞

‖x(t, x0, u(t))‖
A
≤ G(‖u‖

L∞
). (13)

Remark 4.9: We may assume that σ is parametrized such
that ‖σ(r)‖1 = r for all r ≥ 0. For any other parametrization
of σ, e.g., σ ◦ κ with κ ∈ K∞ would have led to the same
estimate, since in this case one has ρ ◦ κ instead of ρ, and
the κ will eventually cancel out in (12).

Proof. We will only show that the asymptotic gain of
the comparison system (10) is given by

lim sup
t→∞

v(t) ≤ σ ◦max
i
ρ−1
i (ess. supt wi(t)). (14)

From here the result follows by utilizing the definitions of
Vi, ψ1i and ηi, for i = 1, . . . , n.

Take w(·) ∈ L∞ and denote w = ess. supt w(t). Since
ρi ∈ K∞, i = 1, . . . , n, there exists a minimal r ∈ R+

such that ρ(r) ≥ w, and this is r = maxi ρ−1
i (wi). In other

words, w(·) ∈ [0, ρ(r)] for almost all t ∈ R.
Now we compare solutions of the following three systems,

v̇(t) = g(v(t)) + w(t) (15)
v̇(t) = g(v(t)) + w (16)
v̇(t) = g(v(t)) + ρ(r). (17)

For a fixed initial conditions, the solutions to these systems
are ordered in the following way, for all times t ≥ t0,

φ(15)(t, t0, v0) ≤ φ(16)(t, t0, v0) ≤ φ(17)(t, t0, v0).

The solutions are all confined to Rn+ and due to the ISS
assumption they must exist for all times. It follows that any
asymptotic bound on solutions of (17) is also an asymptotic
bound on solutions of (15).

Given an initial state v0 define r0 to be the smallest
r ≥ 0 such that σ(r) ≥ v0. This turns out to be r0 =
maxi σ−1

i (v0
i ). In particular, we have

φ(15)(t, t0, v0) ≤ φ(17)(t, t0, σ(r0)) (18)

for all t ≥ t0. Similarly, for any v we can find an r ≥ r such
that σ(r) ≥ v and g(σ(r)) + ρ(r) ≤ g(σ(r)) + ρ(r) � 0.
Also we have g(σ(r)) + ρ(r) ≤ 0.

Claim: For all v > σ(r), g(v) + ρ(r) � 0.

σ

σ(r)

{v : g(v)� 0}

σ(r) + Rn+

[0, σ(r)]

Fig. 1. The geometry underlying the proof of Theorem 4.8.

Proof. For any such v there exists a minimal r > r, such
that σ(r) ≥ v and for some i, σi(r) = vi. Since g is quasi-
monotone nondecreasing we have gi(v)+ρ(r) ≤ gi(σ(r))+
ρ(r) < 0 by the definition of σ and ρ. It follows that indeed
g(v) + ρ(r) � 0, proving the claim.

By Lemma 4.2 it follows that the set [0, σ(r)] attracts all
trajectories of (17) that start in σ(r) + Rn+. By the ordering
of solutions it follows that all trajectories that start in Rn+ are
attracted to [0, σ(r)]. By an argument similar to that under-
ling the stability assertion in Lemma 3.1, the set [0, σ(r)] is
also Lyapunov stable, hence globally asymptotically stable
with respect to the system (17).

In other words, for system (15), inputs w(·) such that for
almost all times w(t) ∈ [0, ρ(r)], asymptotically yield states
in [0, σ(r)]. This concludes the proof.

V. NUMERICAL IMPLEMENTATION

As seen in Theorem 4.8, the computation of asymptotic
gain amounts to the computation of the path σ(r), which is
the trajectory of the autonomous comparison system (11) for
a special initial condition v0. In practice, even if we known
that (10) is ISS, we generally do not know component-wise
unbounded σ and ρ without any addition structure. However,
on finite intervals we can find sampled versions of σ and ρ
quite easily, allowing to generate plots of asymptotic gains
of large-scale systems in an instant.

A. Computing σ and ρ

Assume we have an initial condition sR ∈ Rn+ satisfying
g(sR) � 0, and, without loss of generality, ‖sR‖ = R.
Then we can numerically compute a solution φ(t, 0, sR)
of (2) for times t ∈ [0, T ] for some very large T > 0,
yielding ‖φ(T, 0, sR)‖ = ε > 0 and ε arbitrarily small.
Due to Lemma 3.1.vi along this trajectory it must hold
that g(φ(t, 0, sR))� 0. Re-parametrisation of this trajectory
gives a path σ defined for r ∈ [ε,R], normalized such that
‖σ(r)‖1 = r for all r ∈ [ε,R], and whose component
functions σi are strictly increasing and could be extended
to K∞ functions. The computation of ρ remains the same
as before, essentially it amounts to evaluation of the vector
field g along σ.

The conclusions of the main result remain essentially true
with such a finite length path, but the sets of initial conditions



and inputs have to be restricted, and the asymptotic gain will
be biased.

Corollary 5.1: Let a large-scale system (6), decomposed
into subsystems (5) satisfying (7)–(8), be given. Consider
(10) with g quasi-monotone nondecreasing and locally Lips-
chitz, g(0) = 0, and arising from (8). Let ε,R ∈ R+ satisfy
0 < ε < R. Suppose that σ, ρ : [ε,R] → Rn+ are positive,
continuous, strictly increasing (in every component) such
that g(σ(r)) + ρ(r) � 0 for all r ∈ [ε,R]. Then the gain
of the magnitude of external disturbances to the asymptotic
magnitude the states of the nominal system (6) is component-
wise bounded from above by a map G̃ : R+ → Rn+ with
G̃i ∈ K∞, given by

G̃(w) = max
{
G(w), ψ−1

1 ◦ σ(ε)
}

with G and ψ−1
1 as in Theorem 4.8, in the sense that

lim sup
t→∞

‖x(t, x0, u(t))‖
A
≤ G̃(‖u‖

L∞
)

for all L∞ inputs u such that a.e., ‖u(t)‖ ∈ [0, ρ(R)] and
all initial conditions x0 ∈ RN such that ‖x0‖

A
∈ [0, σ(R)].

The proof is essentially the same as that of Theorem 4.8. It
has only to be noted that the set [0, σ(R)] is invariant under
the system v̇ = g(v) +ρ(R), which ensures that solutions of
the comparison system exist for all times.

Now the computation of the path only hinges upon know-
ing the initial condition sR ∈ Rn+.

B. Computing sR ∈ Rn+
From the discussion in the previous section it remains to

find the initial condition sR ∈ Rn+ satisfying ‖sR‖1 = R and
g(sR)� 0.

If the origin is attractive with respect to (2) and the simplex
set

SR = {v ∈ Rn+ : ‖v‖1 = R}

is contained in the region of attraction, which we denote by
B, then Lemma 3.1 tells us that there exists such a point
sR ∈ Rn+.

Let g be locally Lipschitz and quasi-monotone nondecreas-
ing, g(0) = 0. Taking any initial condition v0 ∈ Rn+, v0 � 0
and computing φ(t, v0) for t ≥ 0 tells us whether or not
the origin is attractive: If φ(t, v0) → 0 as t → ∞ then it
is and v0 ∈ B, otherwise v0 is at least not in the region of
attraction. If v0 ∈ B, then also [0, v0] ⊂ B, and hence, with
R = mini v0

i > 0, SR ⊂ B.
At this stage, it must hold that for all v ∈ SR, g(v) � 0.

Now, using the labeling function

lδ(v) = min{i = 1, . . . , n : gi(v) + δ < 0}, (19)

where δ > 0, as well as one of the two algorithms described
in [8] yields the desired sR ∈ Rn+, cf. also [6], [18].

Remark 5.2: Here δ > 0 is a numerical design parameter.
Larger δ give faster convergence of the Eaves algorithm, but,
since not necessarily

g(v) + (δ, . . . , δ)T � 0 for all v ∈ SR, (20)

the algorithm may not converge to a point sR ∈ Rn+ if δ is
too large. On the other hand, if g(v) � 0 for all v ∈ SR
then due to continuity of g, for small enough δ > 0 it must
converge to a point sR ∈ Rn+, possibly at the cost of a lower
rate of convergence.

C. Sampling and interpolation of σ and ρ

In practice the computation of σ is achieved by numeri-
cal integration, first yielding a sampled version φ(tk, sR),
{tk}Kk=0, of the trajectory φ(·) in Section V-A. Re-
parametrization first yields {σ(rk)}Kk=0 with ε = r0 ≤ r1 ≤
. . . ≤ rK = R, such that ‖σ(rk)‖1 = rk for all k. To obtain
ρ, one could fix 1 > κ > 0, a design parameter which should
be very small, and then compute directly

ρ(rk) := min
l=k,...,K

(1− κ)(−g(σ(rk))).

If the sampling intervals are small enough, then linear inter-
polation of the data points σ(rk) and ρ(rk) is permissible,
yielding piecewise affine paths, with σ(r) ∈ Ω = {v ∈
Rn+ : g(v) � 0} and g(σ(r)) + ρ(r) � 0 for all r ∈ [ε,R].
This in particular makes it easy to compute the inverses
ρ−1
i : [ρi(ε), ρi(R)] → [ε,R], which are again piecewise

affine.

D. A few remarks

Remark 5.3: If the origin is not attractive with respect
to (2) then in particular (10) is not ISS. If the origin is
attractive with respect to (2) with a domain of attraction
that contains, say [0, v0], v0 � 0, then this does not imply
that (10) is ISS, it only implies ISS locally. In the case when
the system (2) is not globally ISS, its asymptotic gain can
be computed (i.e., finite) only for small magnitudes of the
external input. Corollary 5.1 will still produce a possibly
large region [0, σ(R)], but the corresponding region [0, ρ(R)]
might become small. It may be worth mentioning that the ISS
property held only locally does not guarantee integral ISS.

Remark 5.4: The approach put forward in this paper can
be a useful tool when large-scale systems are designed or
analysed. Here it serves as a first step before one even
tries to derive analytical results. If the proposed algorithm
(Corollary 5.1) fails to deduce ISS even with respect to very
small regions of initial states and inputs then any analytical
approach to prove ISS of the comparison system (9) must
fail as well.

VI. NUMERICAL EXAMPLES

In this section we provide two examples. First we provide
a nontrivial example for the application of Theorem 4.8.
Then we provide some statistics on the numerical implemen-
tation of one of the Eaves algorithms [8], which is needed
to compute the initial condition in Section V-B. We also
show plots of some exemplary gains that we obtain with our
approach for a particular nonlinear example.



Example 6.1: Consider g : R4
+ → R4 given by

g(v) =


−v6

1 + v4
4

−3v2
2 + v3

3 + v2
4

−4v3 + v1
−2v2

4 + v2
2 + v3

3

 .

Observe that g is locally Lipschitz and quasi-monotone
nondecreasing(its Jacobian is Metzler) with g(0) = 0.

Claim: The system

v̇ = g(v) + w, u, v ∈ R4
+, (21)

is ISS from w to v.
Proof. In virtue of Lemma 4.6 all we have to show

is that there exist σi, ρi ∈ K∞ such that with σ(r) =
(σ1(r), . . . , σ4(r))T and ρ(r) = (ρ1(r), . . . , ρ4(r))T ,

g(σ(r)) + ρ(r)� 0 for all r > 0.

Now take

σ(r) =


3
√

10r√
3r

3
√

3r√
4r


which is component-wise of class K∞. Next we compute

g(σ(r)) =


−84r2

−2r(
3
√

10− 4 3
√

3
)

3
√
r

−2r

 =: −ρ̃(r)

and observe that also ρ̃ is of class K∞ in every component.
Defining ρ = 1

2 ρ̃ yields the desired inequality and guarantees
that indeed system (21) is ISS due to Lemma 4.6.

In fact, since ρ̃ already is strictly increasing, we can
compute the asymptotic gain with respect to the max-norm
as

γ(r) = max
i,j

(
σi ◦ ρ̃−1

j

)
(r).

The gain has been plotted in Figure 2.
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Fig. 2. The nonlinear gain obtained for the monotone system v̇ = g(v)+w
in Example 6.1 on two different intervals.

Since in general we cannot write down explicitly σ and ρ,
we have to resort to numerical integration to find σ. From

there we can compute ρ easily as was described in Section V.
In the next example we use the Eaves algorithm [8] to
compute the initial condition sR that is used in Section V for
a number of randomly chosen monotone systems, to give an
idea of the numerical complexity of this task. Note however,
that here we use the K1 complex described in [8], which can
be considered slow in comparison to similar algorithms.

Example 6.2: Assume that A ∈ Rn×n is of the form
A = −I + P , where I is the identity and P is a non-
negative matrix (element-wise), with spectral radius ρ(P ) :=
max{|λ| : λ is an eigenvalue of P} < 1. It can be verified
that the spectral abscissa α(A) satisfies

α(A) := max{Reλ : λ is an eigenvalue of A}
= −1 + ρ(P ) < 0.

So A is a Hurwitz matrix with negative diagonal entries and
non-negative off-diagonal entries. Now we define a nonlinear
but smooth and order preserving coordinate transformation
S : Rn → Rn satisfying S(0) = 0 and S(Rn+) = Rn+. Here
we have chosen S to be diagonal and given by

S(v)i =


evi/e if vi > 1,
vi if vi ∈ [−1, 1],
−e−vi/e if vi < −1.

Now define the differential equation

v̇ = g(v) = S′(S−1(v))AS−1(v). (22)

Under a nonlinear change of coordinates (22) is just the
system

ż = Az, (23)

and by our initial remark this system is stable.
Instead of computing the stable manifold for (23) and

transforming it to the coordinates of system (22), we apply
the Eaves algorithm to find points sR ∈ Rn+ near the stable
manifold of (22) satisfying g(sR)� 0.

The Eaves-algorithm has been implemented (in MATLAB)
as it is proposed in the paper [8] based on the K1 complex
and using the integer labeling

lδ(v) = min{i : gi(v) < −δ}, (24)

where δ is numerical design parameter and usually chosen
very small. It should be noted that larger δ give faster
convergence, while for δ → 0 convergence is guaranteed,
cf. Table I.

The algorithm is then applied to the simplex SR = {v ∈
Rn+ : ‖v‖1 = R} and produces sR ∈ Rn+.

As a proof of concept, numerical simulations have been
performed on a MacBook with 2GB RAM and Intel Core
2 Duo Processor operating at 2.4 GHz in MATLAB under
MacOS. The outcomes are shown in Table I, with average
run times and number of iterations of the Eaves-Algorithm
for a range of dimensions n of the state space.



Dimension (n) Avg.Time [s] Avg.Iterations Succ.rate
δ = 0.1, Max.Iterations=100,000

5 0.10610 340.48 100%
10 0.64374 2063.87 100%
15 1.77744 5549.80 100%
20 3.74164 11534.94 100%
25 7.57742 20994.42 100%
30 13.80078 36864.52 99%

δ = 0.5, Max.Iterations=100,000
5 0.02906 91.83 94%
7 0.06723 215.47 92%

10 0.16074 510.90 10%
δ = 0.01, Max.Iterations=100,000

5 0.64410 2131.84 100%
7 2.00263 6500.52 100%

10 5.06990 16191.96 100%

TABLE I
The Eaves K1 algorithm applied to the example with A ∈ Rn×n

+ , A =
−I + P , R = 10, α(A) = −0.2, and different values of δ > 0 (the
labeling parameter). Here the matrix P described above is populated with
uniformly distributed positive random entries, then 30% of these are set
to zero. The results shown are time in seconds and number of iterations
needed per successful run of the algorithm, as well as the success rate. The
numbers are averages over 100 simulations. The effect of different choices
of δ is evident.

VII. CONCLUSIONS

We have demonstrated that comparison principles and
vector Lyapunov functions lead to simple formulae for
asymptotic gains by utilizing one special path in an in-
variant set of the autonomous dynamics of the comparison
system. When this approach is combined with a numerical
implementation of the Eaves algorithm it also provides a
useful tool to check whether a large-scale interconnection is
IS(p)S. For such an implementation it has been shown that
comparison systems of order up to 30 (i.e., 30 interconnected
systems) are numerically feasible. Using similar arguments,
it is possible to also derive transient bounds in a similar way.
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APPENDIX

Proof of Lemma 4.2 We start with the second assertion.
Suppose it does not hold. Then there exists an x̂ > x with
f(x̂) ≥ 0. If f(x̂) = 0 then we are done, x̂ an equilibrium
and the corresponding solution not attracted to x − Rn,
contradicting the assumption.

It suffices to show that for all x̃ > x̂, x̃ 6� x (i.e.,
those x̃ on the boundary of x̂ + Rn) we have f(x̃) ≥ 0.
This follows directly from the fact that f is quasi-monotone
nondecreasing. Under a change of coordinates x = x̂+z, the
origin becomes the point of interest; let f̃(z) = f(x̂ + z).
Then ẋ = f(x) = f̃(z) = ż, and f̃(0) ≥ 0. Now by a
standard viability theory argument (cf. [4], [19, Lemma 3.3]),
the positive orthant is invariant for system ż = f̃(z), hence
the set x̂ + Rn is invariant for system ẋ = f(x). But this
contradicts attractivity of the set x−Rn, proving the second
assertion.

Now the first assertion. Consider again the system ż =
f̃(z) instead with z = x − x. Then we have to show that
−Rn+ is globally attractive.

By assumption f̃(z) � 0 for all z > 0 and f̃(0) ≤ 0. It
follows by the same argument as in Lemma 3.1.v that the



set
Ω̃ := {z ∈ Rn : f̃(z)� 0}

satisfies
Ω̃ ∩ Sr 6= ∅ for all r > 0.

By [19, Lemma 3.13] the set Ω̃ is forward invariant. It
follows that for any z ∈ Ω̃ ∩ Rn+, φ(t, z)→ −Rn+.

Now, by assumption for any z ∈ Rn+ there exists y ∈ Rn+,
y ≥ z, such that f̃(y) � 0. By the ordering of solutions
property of monotone flows (Lemma 3.1, possibly applied
several times in succession), φ(t, z) ≤ φ(t, y)→ −Rn+. This
proves that indeed −Rn+ is globally attractive for system ż =
f̃(z), and hence x−Rn+ is globally attractive for the system
ẋ = f(x).

Proof of Lemma 4.3 The first part of the result is
obvious. For the proof of the second part assume first that
system (10) is ISS.

This implies that for any constant input w there exists a
bounded set Aw ⊂ Rn+ such that Aw is globally asymptoti-
cally stable with respect to the monotone system v̇ = gw(v)
with gw := g(v) + w. Denote vw := supAw, so that
[0, vw] ⊃ Aw. Due to the monotonicity of the flow, also
[0, vw] is globally attractive. By Lemma 4.2 it follows that
gw(v) � 0 for all v > vw. Further, as in the proof of said
lemma, it follows that we have

{v : v ≥ vw} ∩ {v : gw(v)� 0} ∩ Sr 6= ∅

for all r > ‖vw‖1. In particular there exists v > vw such
that g(v) + w = gw(v) � 0. Hence, for any w ∈ Rn+ there
exists a v ∈ Rn+ such that g(v) +w � 0, or, in other words,

−g(v)� w. (25)

Now we have to show that also for any v and w there
exists a v > v such that g(v) + w � 0. Given v and w,
let ṽ := max{v, vw} with vw := maxAw as before. Let

w̃ := maxv∈[0,ṽ] |g(v)|. Then we have g(ṽ) + w̃ ≤ 0 and the
set [0, ṽ] is globally attractive with respect to v̇ = gw̃.

Repeating the argument above, we obtain a point v > ṽ ≥
v such that g(v) + w ≤ g(v) + w̃ � 0.

Proof of Lemma 4.4 The first part follows from
Lemma 3.1.vii. For the second part we note that closedness
of O is obvious. Now let ξ : (0,∞)→ R be any strictly de-
creasing diffeomorphism (in contrast to strictly increasing).
Then it is plain to check that

σ̃(s) :=

{
φ̃(ξ(s)) if s > 0
0 otherwise

defines such a path, except that not necessarily ‖σ̃(r)‖1 =
r. Normalization yields σ(r) = 1

‖σ̃(r)‖1 σ̃(r). The third
part is a consequence of the fact that g(φ̃(t)) � 0. It
suffices to consider σ̃ instead of σ, which satisfies d

dr σ̃(r) =
gi(φ̃(ξ(r)))︸ ︷︷ ︸

<0

· ξ′(r)︸︷︷︸
<0

> 0 for all r > 0. Hence already the

functions σ̃i are of class K and normalization does not
change this fact. Since the solution φ̃ exists for all times
and is strictly increasing in negative time, it must either tend
to an equilibrium point, which it does not, or be unbounded.
Hence at least one σi must be unbounded.

Proof of Lemma 4.5 The fact that −g(σ(r))� 0 for all
r > 0 is obvious. Any unbounded, positive definite function
R+ → R+ can be bounded from below by a positive definite,
continuous, nondecreasing, and unbounded function, e.g.,

ρi(r) = inf
s≥r

ρ̃i(s)

is suitable. This in turn can be bounded from below by a
class K∞ function, using a standard integral argument.

Proof of Lemma 4.6 This follows from Lemma 4.3.ii
using the fact that for any v, w ∈ Rn+ there exists an r > 0
such that σ(r) ≥ v and ρ(r) ≥ w.


