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Abstract— This paper advocates that the convergent systems
property and incremental stability are two intimately related
though different properties. Sufficient conditions for the con-
vergent systems property usually rely upon first showing that
a system is incrementally stable, as e.g. in the celebrated
Demidovich condition. However, in the current paper it is shown
that incremental stability itself does not imply the convergence
property, or vice versa. Moreover, characterizations of both
properties in terms of Lyapunov functions are given. Based on
these characterizations, it is established that the convergence
property implies incremental stability for systems evolving on
compact sets, and also when a suitable uniformity condition is
satisfied.

I. INTRODUCTION

The notion of convergent dynamics originates from the
Russian literature. It requires the existence of a unique
uniformly asymptotically stable solution to a differential
equation, which is bounded in forward and backward time,
see e.g. [3], [16].

This convergence property has many useful applications.
One particular advantage is that there are sufficiency criteria
which guarantee this property without explicit knowledge
of the unique uniformly asymptotically stable solution. The
celebrated Demidovich condition [3] is of this type, see [8]
for a brief introduction, or the monograph [10] for more
advanced results on the convergence property. The Demi-
dovich condition does in fact establish another quite related
property, namely incremental stability. Roughly speaking, a
system is incrementally stable, if all solutions are uniformly
asymptotically stable, see [17], [1]. Both, convergence and
incremental stability, are instrumental in a range of control
problems such as, e.g., output regulation and synchronization
[11], [2], [15], [7].

There is a lot of renewed interest in both properties in
recent years, in parts due to their potential usefulness in
understanding problems of synchronization of many systems.
It may seem that incremental stability would be more a re-
strictive condition on a system than the convergence property.
This, however, is not entirely true. We will present examples
to show that none of the two concepts on its own implies
the other.

Historically, a number of results are known that allow to
deduct the convergence property from incremental stability,
under additional assumptions, just like the Demidovich con-
dition in [3], [8]. In this paper, we go in the other direction
and present criteria that guarantee convergent systems to be
also incrementally stable.

To this end, we develop a Lyapunov characterization for
incremental stability, which is similar but not identical to the
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characterization by Angeli [1], owed to circumstance that
we consider time-varying systems. This will lead us to a
natural criterion for incremental stability. We will also see
that for systems whose dynamics evolve on compact sets
convergence always implies incremental stability. There are,
however, other notions of incremental stability that we do
not focus on, e.g., a notion that is invariant under changes
of coordinates, see the recent work [18].

This paper is organized as follows: First we review the
notions of convergent systems and of incremental stability
and develop Lyapunov characterizations for both properties.
Then we present the examples showing that none of the
two per se implies the other. In a final section, we present
the main results, allowing to pass from convergence to
incremental stability.

a) Notation: By R+ we denote the real half line [0,∞).
Throughout the paper, we will denote by K the class of
continuous and strictly increasing functions κ : R+ → R+

for which κ(0) = 0. A function ρ is of class K∞ if it is of
class K and unbounded. A continuous function β : R2

+ →
R+ is of class KL if for any fixed s ≥ 0, β(·, s) ∈ K and
β(s, ·) is non-increasing with limt→∞ β(s, t) = 0.

II. CONVERGENT SYSTEMS

We start by introducing the definition of convergent sys-
tems. Consider hereto a system

ẋ(t) = f(t, x) (1)

with f : Rn+1 → Rn measurable in t and locally Lipschitz
in x ∈ Rn, uniformly for t in compact sets (this assumption
guarantees uniqueness and local existence of solutions, cf.
[13]). We say that a set A ⊂ Rn is positively invariant under
(1) if x0 ∈ A implies x(t, t0, x0) ∈ A for all t ≥ t0. Let
X ⊂ Rn be a subset of Rn.

Definition 1 (convergent dynamics; cf. [10], [8]):
System (1) is uniformly convergent in a positively invariant
set X if

1) all solutions x(t, t0, x0) exist for all t ≥ t0 for all
initial conditions (t0, x0) ∈ R×X ;

2) there exists a unique solution x(t) in X defined and
bounded for all t ∈ R;

3) the solution x(t) is uniformly1 asymptotically stable in
X , i.e., there exists a function β ∈ KL such that for
all (t0, x0) ∈ R×X and t ≥ t0,
‖x(t, t0, x0)− x(t)‖ ≤ β

(
‖x0 − x(t0)‖, t− t0

)
. (2)

System (1) is globally uniformly convergent if it is uniformly
convergent in Rn.
For a uniformly convergent system, the unique, bounded uni-
formly asymptotically stable solution x(t) is called a steady-
state solution. As the convergence property states essentially
the asymptotic stability of a single (but perhaps not known)

1In Definition 1 the uniqueness of the solution x(t) is in fact a conse-
quence of its uniform asymptotic stability, cf. [10, p.15, Property 2.15].



trajectory, the following characterization is evident from a
standard converse Lyapunov result in [6, Theorem 23].

Theorem 2: Assume that system (1) is globally uniformly
convergent. Assume that the function f is continuous in (t, x)
and C1 with respect to the x variable. Assume also that the
Jacobian ∂

∂xf(t, x) is bounded, uniformly in t. Then there
exists a C1 function V : R × Rn → R+, functions α1, α2,
and α3 ∈ K∞, and a constant c ≥ 0 such that

α1(‖x− x(t)‖) ≤ V (t, x) ≤ α2(‖x− x(t)‖) (3)

and
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3(‖x− x(t)‖) (4)

and
V (t, 0) ≤ c, t ∈ R. (5)

Conversely, if a differentiable function V : R×Rn → R+ and
functions αi ∈ K∞, i = 1, 2, 3, and c ≥ 0 are given such that
for some trajectory x : R→ Rn estimates (3)–(5) hold, then
system (1) must be globally uniformly convergent and the
solution x is the unique bounded solution as in Definition 1.

Condition (5) is to ensure the existence of a positively
invariant, compact set. Note that the result does require the
explicit knowledge of the asymptotically stable solution x.

III. INCREMENTAL STABILITY

Next, we introduce the second stability concept considered
in this paper.

Definition 3 (incremental stability; cf. [1]): System (1) is
incrementally asymptotically stable (IS for short) in a posi-
tively invariant set X ⊂ Rn if there exists a function β ∈ KL
such that for any ξ1, ξ2 ∈ X and t ≥ t0,

‖x(t, t0, ξ1)− x(t, t0, ξ2)‖ ≤ β(‖ξ1 − ξ2‖, t− t0) . (6)

In the case X = Rn we say that system (1) is globally
incrementally stable (GIS), or just incrementally stable.

This definition of incremental stability implicitly requires
that solutions to (1) exist for all forward times. Also note
that in contrast to the definition given here, most existing
notions of incremental stability are defined only for systems
with right-hand sides not depending explicitly on time.

In [1], a characterization of GIS in terms of a merely
continuous Lyapunov function has been derived for systems
of the form

ẋ = f(x, d), (7)

where d is an arbitrary, measurable disturbance function
taking values in a closed subset D of Rm. However, the
formulation (7) does not encode an explicit dependence of
the right-hand side f on time as is the case in (1), and
subsequently the Lyapunov function shown to exist in [1]
does not depend on time either. To characterise GIS for
systems of the form (1), we present the following result for
time-varying systems, extending that of [1].

Theorem 4: System (1) is GIS if and only if there exist a
continuous function W : R × Rn × Rn → R, functions α1,
α2, α3 of class K∞ such that

1) the inequalities

α1(‖x1 − x2‖) ≤W (t, x1, x2) ≤ α2(‖x1 − x2‖) (8)

hold for all x1, x2 ∈ Rn and t ∈ R;

2) along trajectories of (1) for any ξ1, ξ2 ∈ Rn, and any
t ≥ t0 it holds that
W
(
t, x(t, t0, ξ1), x(t, t0, ξ2)

)
−W (t0, ξ1, ξ2)

≤ −
∫ t

t0
α3

(
‖x(τ, t0, ξ1)− x(τ, t0, ξ2)‖

)
dτ.

(9)

The proof is rather technical and long, while following
in spirit the same steps of the corresponding result in [1]
with the added difficulty of the time-varying nature of the
problem. Yet, the proof is not the same, and there are some
non-trivial technicalities involved. The proof of Theorem 4
is given in the appendix.

In this result, we may trade the unboundedness of α3 for
a Lipschitz-like property of the Lyapunov function W as
formalized in the next corollary.

Corollary 5: If system (1) is GIS then there exist a
continuous function W : R × Rn × Rn → R, functions α1,
α2 ∈ K∞, and a positive definite function α3 such that
the inequalities (8) and (9) hold. Moreover, there exists a
function γ ∈ K∞ so that for all z1, z2 ∈ Rn × Rn and all
t0,

|W (t0, z1)−W (t0, z2)| ≤ γ(‖z1 − z2‖). (10)

IV. EXAMPLES

In this section, we present example systems which are
1) uniformly convergent but not GIS or 2) GIS but not
uniformly convergent.

Our first example is a uniformly convergent system that
is not GIS, or, more precisely, a system with globally
asymptotically stable equilibrium at the origin that is not
incrementally stable. The trajectories of this system spiral
counter-clockwise into the origin, but the further away from
the origin a solution starts, the faster the angular velocity is.
So, the solution x(t) ≡ 0 is globally asymptotically stable,
which is shown using a quadratic Lyapunov function, while
two solutions starting at t = 0 with an appropriately chosen
distance ε > 0 away from each other get separated arbitrarily
much in finite time, if they both start far away from the
origin.

Example 6: Consider the system
ẋ = A(x)x , x ∈ R2 , (11)

where A(x) ∈ R2×2 is defined by

A(x) = (x>x)

(
0 −1
1 0

)
− sat1(x>x) I ,

where I ∈ R2×2 denotes the identity matrix and satr : R→
R is given by

satr(s) =


−r if s ≤ −r
s if |s| < r

r if s ≥ r
.

Consider the standard quadratic Lyapunov function V (x) =
1
2x
>x with ∇V (x) = x>. Then

〈∇V (x), A(x)x〉 = x>x(−x1x2 + x1x2)− sat1(x>x)x>x

= − sat1(x>x)x>x < 0

for all x 6= 0, proving global asymptotic stability of the
origin with respect to (11). Hence the system is globally
uniformly convergent. Rewriting system (11) in polar coor-
dinates yields, in the region where r > 1,

ṙ = −r
φ̇ = r2 ,



which has solutions for initial values (in polar coordinates)
(r0, φ0)>, r0 > 1, explicitly given by

r(t) = r0e−t

φ(t) = φ0 +
(r0)2

2

(
1− e−2t

)
,

(12)

for t ≥ 0 such that r(t) > 1.
Claim: With M = 2πe

e−1 there exist points ξ1, ξ2 with ‖ξ1−
ξ2‖ ≤M such that for any R > 1 sufficiently large,

‖x(1/2, 0, ξ1)− x(1/2, 0, ξ2)‖ =

√
R+M +

√
R√

e
. (13)

This implies that there cannot exist a KL function β such
that (6) holds and hence the system is not GIS.

Proof of the claim: We argue constructively. Let R >
1 be large enough such that solutions starting in ξ1 =(√
R+M, 0

)>
and ξ2 =

(√
R, 0

)>
satisfy ‖x(t, 0, ξi)‖ > 1

for all t ∈ [0, 1/2], i = 1, 2. Observe that ‖ξ1 − ξ2‖ =(
M +

√
R
(
2
√
R− 2

√
R+M

))1/2

≤
√
M . Using (12), at

time t = 1/2 the difference of the respective angle functions
φi(t) = φ(t, 0, ξi), i = 1, 2, satisfies

φ1(1/2)−φ2(1/2) = (R+M)/2(1−e−2t)−R/2(1−e−2t)

=
M

2
(1− 1/e) = π . (14)

Denote correspondingly ri(t) = r(t, 0, ξi), i = 1, 2. Us-
ing (14),

‖x(1/2, 0, ξ1)− x(1/2, 0, ξ2)‖ = r1(1/2) + r2(1/2)

=
√
R+Me−

1/2 +
√
Re−

1/2 =

√
R+M +

√
M√

e
,

where the first equality is owed to the fact that x(1/2, 0, ξ1)
and x(1/2, 0, ξ2) are vectors pointing in opposite directions.

The second example is a system which is GIS but not
uniformly convergent.

Example 7: Consider
ẋ(t) = t− x , x ∈ R , (15)

which has the explicit solution
x(t, t0, x0) = x0e−t+t

0

+ (t− 1)− (t0 − 1)et
0−t .

Obviously, the solution passing through x0 = 0 at t0 = 0 is
unbounded. Hence the system cannot be globally convergent
(since otherwise the same solution would have to be attracted
to a bounded solution as t→∞). Taking any ξ1, ξ2 ∈ R then
d

dt

[
x(t, t0, ξ1)−x(t, t0, ξ2)

]
= −

(
x(t, t0, ξ1)−x(t, t0, ξ2)

)
,

which implies
‖x(t, t0, ξ1)− x(t, t0, ξ2)‖ ≤ ‖ξ1 − ξ2‖e−t,

which, in turn, represents a KL-estimate on the difference
between any two solutions. So the system (15) is GIS.

This in turn implies that the solution passing through x0 =
0 is globally attractive, and hence no bounded solution can
exist, so the system cannot be convergent on a subset of Rn.

On the one hand, the above examples clearly show that
the stability notions of convergence and incremental stability
are different. On the other hand, the classes of GIS and
convergent systems also have nonempty intersection: for
example, any linear system ẋ = Ax with A Hurwitz or any
nonlinear systems satisfying the Demidovich condition [3]
or the conditions in [16] for Luré-type systems satisfies both
properties.

V. MAIN RESULTS

The following theorem is a new sufficiency condition for
incremental stability and provides a condition under which
a uniformly convergent system is also incrementally stable.

Theorem 8: Suppose system (1) is uniformly convergent
on a compact set X . Then, it is also incrementally stable on
that set.

Proof: For future reference we denote dX :=
maxx,y∈X ‖x − y‖, the diameter of X . Note that without
loss of generality we may assume that the closure of the
trajectory x (which is a compact set) is contained in X , i.e.,⋃
t∈R{x(t)} ⊂ X .
We are going to show that differences of solutions satisfy

the uniform attraction and stability properties for restricted
initial conditions.

Uniform attraction: For any ε > 0 there exists a T > 0
such that for any ξ ∈ X , ‖x(t, t0, ξ) − x(t)‖ ≤ β(dX , t −
t0) ≤ ε/2 if t− t0 ≥ T . By the triangle inequality it follows
that for any ξ, η ∈ X , ‖x(t, t0, ξ)−x(t, t0, η)‖ ≤ ε if t−t0 ≥
T . This shows that all solutions starting in X are mutually
uniformly attractive.

Uniform stability: The following argument follows ideas
in the proof of [13, Theorem 55]. Let ξ1, ξ2 ∈ X and t0 ∈ R
be arbitrary. In view of item 3 of Definition 1 we have that
‖x(t, t0, ξ1) − x(t, t0, ξ2)‖ ≤ 2β(dX , t − t0) for all t > t0,
i.e., there exists a KL function β̂ such that
‖x(t, t0, ξ1)− x(t, t0, ξ2)‖ ≤ β̂(dX , t− t0) for all t > t0.

Thus there exists a compact set Y ⊃ X which contains all
solutions with initial values in X (in fact, X is positively
invariant, so Y = X ). Write x1(t) := x(t, t0, ξ1) and
x2(t) := x(t, t0, ξ2). Regarding

x1(t)−x2(t) = ξ1−ξ2+

∫ t

t0
[f(s, x1(s))−f(s, x2(s))]ds

for all t ≥ t0, we have due to the local Lipschitz condition
on f and the compactness of X that there exists a locally
integrable function α : R→ R≥0, cf. [13, Appendix C], such
that for all t ≥ t0,

‖x1(t)− x2(t)‖ ≤ ‖ξ1 − ξ2‖+

∫ t

t0
α(s)‖x1(s)− x2(s)‖ds

Thus, with Gronwall’s inequality we arrive at

‖x1(t)− x2(t)‖ ≤ ‖ξ1 − ξ2‖e
( ∫ t

t0
α(s)ds

)
for all t ≥ t0. As ‖x1(t) − x2(t)‖ ≤ β̂(dX , t − t0) for all
t ≥ t0, we arrive at

‖x1(t)−x2(t)‖ ≤ min

{
‖ξ1−ξ2‖e

(∫ t
t0
α(s)ds

)
, β̂(dX , t−t0)

}
.

From there we can obtain a KL function β̃ such that
‖x(t, t0, ξ1)− x(t, t0, ξ2)‖ ≤ β̃(‖ξ1 − ξ2‖, t− t0)

for all ξ1, ξ2 ∈ X , t0 ∈ R and t ≥ t0.
Remark 9: Let us briefly revisit Example 6 in view of

the statement of Theorem 8. Example 6 concerns a system
that is globally uniformly convergent, but not GIS. Since the
system is globally uniformly convergent, it is also uniformly
convergent on compact sets and Theorem 8 shows that it
is also incrementally stable on compact sets. On compact
sets one cannot choose arbitrary R in (13) that allow for
arbitrarily large distances between solutions at t = 1/2, which
start with the distance M at t = 0. Hence, despite being not



GIS system (11) is indeed incrementally stable on compact
sets.

If system (1) does not evolve in a compact set then
additional conditions on the vector field f allow to infer one
stability property from the other. Let us now formulate a
condition under which a globally convergent system is also
globally IS. In general, while also for convergent systems
all trajectories approach each other, they may do so non-
uniformly, as could be seen from Example 6.

The combined lesson of the example and Theorem 8 is
that problems can only occur “far away” from the unique
bounded solution x. In order to infer GIS from global
convergence, it is natural to require a uniformity of the
attraction of any two solutions only outside an arbitrarily
large set. A generic result based on that idea is as follows.

Theorem 10: Suppose system (1) is globally uniformly
convergent. Assume further that there exists a positive defi-
nite matrix P ∈ Rn×n, i.e. P = P> > 0, a constant C > 0,
and a continuous positive function α4 : [C,∞) → (0,∞)
such that for all times t ∈ R and all x1, x2 ∈ Rn

(x1 − x2)>P
(
f(t, x1)− f(t, x2)

)
≤
{
−α4(‖x1 − x2‖) if max{‖x1‖, ‖x2‖} ≥ C,
0 otherwise.

(16)

Then (1) is GIS.
Proof: By Theorem 2, which is on the characterization

of the uniform convergence property, there exists a Lyapunov
function V satisfying (3) and (4). The solution x is bounded
on R, i.e. there exists a C2 ≥ 0 such that ‖x(t)‖ ≤ C2 for
all t ∈ R. Without loss of generality we may assume that
C − C2 > 0, if necessary by enlarging C for which (16) is
satisfied. There also exist positive constants cP , CP such that
for all x1, x2 ∈ Rn, cP ‖x1−x2‖2 ≤ (x1−x2)>P (x1−x2) ≤
CP ‖x1 − x2‖2.

Denote K :=
{

(x1, x2) ∈ Rn×Rn : max{‖x1‖, ‖x2‖} ≤
C
}

. On the compact set K we have V (t, x1) + V (t, x2) ≤
α2(‖x1 − x(t)‖) + α2(‖x2 − x(t)‖) ≤ 2α2(C + C2).

Let us define W (t, x1, x2) := 1
2b
(
V (t, x1) +

V (t, x2)
)
(x1 − x2)>P (x1 − x2) where b(s) = s/(1 + s) is

a bounded class K function.
We have

W (t, x1, x2) ≤ 1

2
CP ‖x1 − x2‖2

=: α̃1(‖x1 − x2‖)

since b(s) ≤ 1 for all s ≥ 0. We also have

W (t, x1, x2) ≥ 1

2
b
(
α1(‖x1 − x‖)

+ α1(‖x2 − x)
)
cP ‖x1 − x2‖2

≥ 1

2
b

(
α1

(
1

2
‖x1 − x‖

+
1

2
‖x2 − x‖

))
cP ‖x1 − x2‖2

≥ 1

2
b

(
α1

(
‖x1 − x2‖

2

))
cP ‖x1 − x2‖2

=: α̃2(‖x1 − x2‖).

So W is positive definite and radially unbounded in the
distance ‖x1 − x2‖.

Denoting V̇ (xi) := ∂V
∂t + ∂V

∂x f(t, xi) ≤ −α3(‖xi−xi(t)‖)
as per (4) and d

dsb(s) by b′(s), we compute the time-
derivative of W as

Ẇ :=
d

dt
W (t, x1(t), x2(t))

= b′
(
V (t, x1) + V (t, x2)

)
[V̇ (x1) + V̇ (x2)]

· 1

2
(x1 − x2)>P (x1 − x2)

+ b
(
V (t, x1) + V (t, x2)

)
· (x1 − x2)>P

(
f(t, x1)− f(t, x2)

)
. (17)

On the set K the first in the right hand side of (17) term is
bounded from above by

− 1

2
α3

(
‖x1 − x2‖

2

)
cP ‖x1 − x2‖2

1 +
(
2α2(C + C2)

)2
while the second term in the right hand side of (17) is
nonpositive due to (16). Outside of K the first term could
be arbitrarily small in magnitude as b′(s) → 0 for s → ∞,
while still negative, so that outside of K (17) is bounded
from above by

b
(
2α2(C − C2)

)
(x1 − x2)>P

(
f(t, x1)− f(t, x2)

)
≤ −α4(‖x1 − x2‖)b

(
2α2(C − C2)

)
,

again due to (16). If follows that Ẇ is bounded from above
by a function which is negative definite with respect to the
set where x1 = x2. A standard scaling argument (see [14])
with U = ρ(W ) for a suitable function ρ ∈ K∞ turns this
into a smooth Lyapunov function satisfying U̇ ≤ −α5(U)
with α5 ∈ K∞. This function U in particular satisfies (8)
and (9). Hence, by virtue of Theorem 4 we conclude that
system (1) is indeed GIS.

Examples of systems to which Theorem 10 is applicable
include all so-called quadratically convergent systems, see
[9], i.e., globally convergent systems where the convergence
property is characterized by a quadratic Lyapunov-type func-
tion. This also includes systems satisfying the convergence
conditions in [16], [3].

On the other hand, it is also clear from Theorem 10
that system (11) considered in Example 6 cannot satisfy
assumption (16). This can be seen as follows: We consider
two cases. First, if P = aI2 with a > 0, let x1 =
[0, 2µ]> and x2 = [µ, 0]> with µ > 1, then (in view of
sat1(x1>x1) = sat1(x2>x2) = 1)

(x1 − x2)>P (f(t, x1)− f(t, x2))

= a

[
(x1
>x1 − x2>x2)x1>

[
0 −1
1 0

]
x2

+ (x1>x1 + x2>x2) + x2>x1

]
= a[(4µ2 − µ2)2µ2 − 5µ2] = aµ2[6µ2 − 5] > 0.

Second, for any given symmetric positive definite matrix P ∈
R2×2, P 6= aI2, let x1 = −x2 = ξ = [ξ1, ξ2]> ∈ R2 be
sufficiently far away from the origin, then

(x1 − x2)>P (f(t, x1)− f(t, x2))

= 4(ξ>ξ)ξ>P

[
0 −1
1 0

]
ξ − 4 sat1(ξ>ξ)ξ>Pξ

= 4ξ>ξ[P1,2(ξ2
1 − ξ2

2)− (P1,1 − P2,2)ξ1ξ2]− 4ξ>Pξ

= 4
[
P1,2(ξ4

1 − ξ4
2) + (P2,2 − P1,1)ξ1ξ2(ξ2

1 + ξ2
2)

− (P1,1ξ
2
1 + P1,2ξ1ξ2 + P2,2ξ

2
2)
]
,



which always can be made positive for some ξ ∈ R2: if
P1,2 > 0 then let ξ2 = 0 and |ξ1| sufficiently large, if P1,2 <
0 then let ξ1 = 0 and |ξ2| sufficiently large, if P1,2 = 0
then let sgn(P2,2 − P1,1)sgn(ξ1)sgn(ξ2) > 0 and |ξ1| = |ξ2|
sufficiently large. The above holds in particular for x1, x2 ∈
R2 arbitrarily far away from the origin, thus there is no C >
0 for which (16) can be satisfied.

VI. CONCLUSIONS

The global uniform convergence property and global incre-
mental asymptotic stability are very related and yet different
properties. This paper in particular contributes examples of
systems that are globally uniformly convergent but not glob-
ally incrementally stable (and vice versa). These examples
further illuminate the essential differences between these
stability notions. Moreover, we present results that state
sufficient conditions under which a convergent system is also
incrementally stable.
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Birkhäuser, Boston, 2006.

[11] A. Pogromsky, “Passivity based desing of synchronizing systems,” Int.
J. Bifurcation and Chaos, vol. 8, pp. 295–319, 1998.

[12] E. D. Sontag, “Comments on integral variants of ISS,” Systems Control
Lett., vol. 34, no. 1-2, pp. 93–100, 1998.

[13] E. D. Sontag, Mathematical control theory, 2nd ed., Ser. Texts in
Applied Mathematics, vol. 6. Springer, New York, 1998.

[14] E. D. Sontag and A. Teel, “Changing supply functions in input/state
stable systems,” IEEE Trans. Autom. Control, vol. 40, no. 8, pp. 1476–
1478, 1995.

[15] G.B. Stan, R. Sepulchre, “Analysis of interconnected oscillators by
dissipativity theory,” IEEE Trans. Autom. Control, vol. 52, no. 2,
pp. 256–270, 2007.

[16] V. A. Yakubovich, “Matrix inequalities method in stability theory for
nonlinear control systems: I. Absolute stability of forced vibrations,”
Automation and Remote Control, vol. 7, pp. 905–917, 1964.

[17] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions
and almost Periodic Solutions. Springer, New York, 1975.

[18] M. Zamani and R. Majumdar. “A Lyapunov approach in incremental
stability.” In Proc. 50th IEEE Conf. Decis. Control, pp. 302–307,
December 2011.

APPENDIX

Proof of Theorem 4: The proof is similar to the proof
given by Angeli [1], but there are some significant and non-
obvious differences that we will elaborate on. The main
difference and technical difficulty lies in the fact that while
the systems (15) considered in [1] can depend on a time-
varying perturbation, they may not depend on time explicitly.

In contrast, our characterization of incremental stability is for
systems depending explicitly on time. The main differences
are thus related to the uniformity of the decay of the
Lyapunov function. This boils down to a different definition
for U(t0, z0) in step 3 of the proof, as compared to Angeli’s
proof. Another difference is the use of Sontag’s Lemma on
KL-functions in step 7, where another argument was used in
the original proof. Finally, we use a scaling argument similar
to the one used in [14] in order to obtain a decay rate of class
K∞ in step 8.

The ‘if’-part of the proof follows standard arguments (see,
e.g., [4, Theorem 3.2.7]) and is thus omitted. In the following
we treat the ‘only if’-part.

Let us adopt the following notation for this proof. We
consider

ẋ = f(t, x) (18)

and
ż =

d

dt

(
x1

x2

)
=

(
f(t, x1)
f(t, x2)

)
(19)

as in [1]. We have that the diagonal ∆ := {(x>, x>)> : x ∈
Rn} ⊂ R2n is GAS w.r.t. system (19) if and only if
system (18) is GIS, as is shown in Lemma 2.3 in [1]2. The

distance of a point z =

(
x1

x2

)
to the diagonal ∆ is given

by ‖z‖∆ := infw∈∆ ‖w − z‖ and it is shown in [1] that
this equals ‖z‖∆ = 1√

2
‖x1 − x2‖. Now to the details of the

proof:
1) First we define

g(t0, z0) := sup
t≥t0
‖z(t, t0, z0)‖∆ (20)

which satisfies for the K∞ functions α̃1 = id and α̃2 =
β(·, 0), where β comes from the definition of GIS, the
estimate

α̃1(‖z‖∆) ≤ g(t, z) ≤ α̃2(‖z‖∆) (21)
for all z ∈ R2n and t ∈ R. Observe that the supremum
in (20) is in fact a maximum, since ‖z(·, t0, z0)‖∆ is
continuous and tends to zero as time tends to infinity.
The function g also satisfies the continuity property
|g(t, z1)− g(t, z2)| ≤

√
2β(2‖z1 − z2‖∆, 0)

=: γ̃(‖z1 − z2‖∆),
(22)

for all z1, z2 ∈ R2n and t ∈ R. This can be proved as
per Fact 2.5 in [1].

2) Along solutions the function g is obviously non-
increasing: For s > 0 we have

g(t0, z0) ≥ g(t0 + s, z(t0 + s, t0, z0)).

3) Now define
U(t0, z0) := sup

s≥0
g(t0 + s, z(t0 + s, t0, z0))k(s),

where k is any continuously differentiable, positive,
increasing function for which there exist 1 ≤ c1 < c2
such that k(t) ∈ [c1, c2] for all t ∈ R+, and the
derivative of k is bounded from below by some positive
and decreasing function d, i.e. k̇(t) ≥ d(t) for all
t ∈ (0,∞). Necessarily d(t) → 0 as t → ∞, since
otherwise (and because d(t) ≥ 0) k would grow
without bound.

2Note that [1, Lemma 2.3] holds also true for (explicitly) time-dependent
nonlinear systems (19), although in [1] “disturbance-dependent” systems are
considered.



4) In view of c2 ≥ k(t) ≥ c1 ≥ 1 for all t ∈ R+ and (21)
it follows that

U(t0, z0) ≥ g(t0, z0) ≥ ‖z0‖∆ (23)
and

U(t0, z0) ≤ c2α̃2(‖z0‖∆). (24)

Using the relation ‖z‖∆ = 1√
2
‖x1 − x2‖, the inequal-

ities (23) and (24) establish

α1(‖x1 − x2‖) :=
1√
2
‖x1 − x2‖ ≤ U(t0, x1, x2) and

U(t0, x1, x2) ≤ c2α̃2

(‖x1 − x2‖√
2

)
=: α2(‖x1 − x2‖).

(25)
5) From the definition of U it follows that for all t0 ∈ R

and any z1, z2 ∈ R2n and for all ε > 0 there
exists an sε = sε,t0,z1 ≥ 0 such that U(t0, z1) ≤
ε + g(t0 + sε, z(t

0 + sε, t
0, z1))k(sε). This inequality

yields, in view of k(t) ≤ c2 for all t ∈ R+ and (22),
in a few steps (refer to Angeli’s proof in [1]) that
U(t0, z1) − U(t0, z2) ≤ ε + γ̃(β(‖z1 − z2‖, 0))c2.
With ε arbitrary and using a symmetry argument we
arrive at |U(t0, z1)−U(t0, z2)| ≤ γ(‖z1−z2‖), where
γ(r) = γ̃

(
β(r, 0)

)
c2.

6) By definition, U is non-increasing along solutions. We
will now show that U strictly decreases along solutions
of (19).
By the definition of U , for all r > 0 and z0 ∈ R2n

with ‖z0‖∆ = r, for all t0 ∈ R, all h > 0, and all
ε > 0, there exists an s = sε,h,t0,z0 ≥ 0 such that we
can show that

U(t0 + h, z(t0 + h, t0, z0))

≤ U(t0, z0)

[
1− k(h+ s)− k(s)

c2

]
+ ε. (26)

7) Now we would like to let h↘ 0 and ε→ 0 in (26) to
obtain an estimate on the decay of U along solutions
of (19). For this we have to ensure that s in (26) does
not grow without bound when ε and h tend to zero.
Claim: For all r > 0 there exists a T = T (r) > 0
such that s in (26) satisfies s ≤ T , independent of the
choice of h > 0 and ε > 0.
Proof: We start by recalling a known fact. From
Sontag’s Lemma on KL-functions [12] it is known that
for any β ∈ KL there exist functions κ1, κ2 ∈ K∞
such that for all r, t ∈ R+,

β(r, t) ≤ κ1

(
κ2(r)e−t

)
. (27)

A simple consequence of (27) is that for any δ > 0
we have

β(r, t) < δ whenever t > ln
κ2(r)

κ−1
1 (δ)

. (28)

Now we prove the claim. We know from estimates (23)
and (24) that

0 < r = ‖z0‖∆ ≤ U(t0, z0) ≤ c2α̃2(r).

Continuity and monotonicity properties of U along
trajectories of (19) with ‖z0‖∆ = r yield that for some
ν > 0, µ > 0,

ν + ε < U(t0, z0)− µ
< U(t0 + h, z(t0 + h, t0, z0))

≤ U(t0, z0)

(29)

for all 0 < h < h = h(ε) if ε > 0 is sufficiently small,
which we will henceforth assume.
Let δ = ν/c2 and let us assume that no finite T > 0
as in the claim exists. Then for every integer N > 0
there must exist an s > N such that (26) holds for this
s, i.e., we can show that
U(t0 + h, z(t0 + h, t0, z0)) ≤ β(‖z0‖∆, h+ s)c2 + ε

< ν + ε whenever s > ln
κ2(r)

κ−1
1 (ν/c2)

due to (28).

Considering (29) we arrive at the contradiction
ν + ε < U(t0 + h, z(t0 + h, t0, z0)) < ν + ε

thus proving the claim. �
Hence we have shown that we can pass to an ap-
propriate limit in (26) as h ↘ 0 and ε → 0, since
s = sε,h,t0,z0 in (26) remains bounded.

8) Following essentially the same arguments as in [1] we
obtain for some positive definite function α̃3,
U̇(t0, z0) := lim sup

h↘0

U(t0 + h, z(t0 + h, t0, z0))− U(t0, z0)

h
≤ −α̃3(‖z0‖∆).

At this stage it is left to show that we can modify U
such that the function α̃3 can be taken to be of class
K∞. The argument we are going to make follows the
idea in [14].
To this end let µ, ρ ∈ K∞ such that ρ′ = µ and that
s 7→ (µ ◦ α−1

1 )(s)α̃3(s) is bounded from below by
some class K∞ function α3. This is always possible.
Define W := ρ(U) and verify using (25) that it satisfies
bounds (8) with αi = ρ ◦ αi, i = 1, 2. Compute
Ẇ (t0,z0) := lim sup

h↘0

W (t0 + h, z(t0 + h, t0, z0))−W (t0, z0)

h
= lim sup

h↘0
ρ′(U(τt0,h, z(τt0,h, t

0, z0)))·

U(t0 + h, z(t0 + h, t0, z0))− U(t0, z0)

h
(30)

≤ −ρ′
(
α−1

1 (‖z0‖∆)
)
· α̃3(‖z0‖∆)

≤ −α3(‖z0‖∆),

with α̃3 ∈ K∞ and where in equation (30) we have
used the mean value theorem to obtain a sequence
τt0,h

h→0−→ t0 of points in (t0, t0 + h), followed by
continuity of ρ′ and U with respect to time.

9) Now, following again the same arguments as in [1]
we obtain for t ≥ t0, W (t, z(t, t0, z0))−W (t0, z0) ≤
−
∫ t
t0
α3(‖z(s, t0, z0)‖∆)ds, which proves the inequal-

ity (9) in the theorem. This completes the proof of the
theorem.

Proof of Corollary 5: Just take instead of W the function
U defined in the preceding proof at the end of step 5, it
satisfies all the requirements by construction. Without loss
of generality, the function γ can be taken to be class K∞.


